Skip to content

Commit 044be64

Browse files
mo271Paul-Lezeric-wieser
authored
bump toolchain and Mathlib to v4.21.0 (#602)
Co-authored-by: Paul Lezeau <[email protected]> Co-authored-by: Eric Wieser <[email protected]>
1 parent 03cd321 commit 044be64

File tree

16 files changed

+50
-146
lines changed

16 files changed

+50
-146
lines changed

FormalConjectures/Arxiv/0911.2077/Conjecture6_3.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -50,7 +50,7 @@ theorem arxiv.id0911_2077.conjecture6_3
5050
le_trans (le_of_lt (Set.mem_Ioo.mp h_p).right) (by linarith)
5151
1 - Φ ((1 / 2 - p) * sqrt (2 * k : ℝ≥0) / σ)
5252
+ (1 / 2) * ((2 * k).choose k) * σ ^ (2 * k)
53-
≤ ((PMF.binomial (.ofReal p : ℝ≥0∞) hp' (2 * k)).toMeasure (Set.Ici k)).toReal := by
53+
≤ ((PMF.binomial (.ofReal p : ℝ≥0∞) hp' (2 * k)).toMeasure (Set.Ici ⟨k, by omega⟩)).toReal := by
5454
sorry
5555

5656
end Arxiv.«0911.2077»

FormalConjectures/ErdosProblems/306.lean

Lines changed: 6 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -32,8 +32,8 @@ each the product of two distinct primes, such that $\frac{a}{b}=\frac{1}{n_1}+\c
3232
@[category research open, AMS 11]
3333
theorem erdos_306 : (∀ (q : ℚ), 0 < q → Squarefree q.den →
3434
∃ k : ℕ, ∃ (n : Fin (k + 1) → ℕ), n 0 = 1 ∧ StrictMono n ∧
35-
(∀ i ∈ Finset.Icc 1 k, ω (n i) = 2 ∧ Ω (n i) = 2) ∧
36-
q = ∑ i ∈ Finset.Icc 1 k, (1 : ℚ) / (n i)) ↔ answer(sorry) := by
35+
(∀ i ∈ Finset.Icc 1 (Fin.last k), ω (n i) = 2 ∧ Ω (n i) = 2) ∧
36+
q = ∑ i ∈ Finset.Icc 1 (Fin.last k), (1 : ℚ) / (n i)) ↔ answer(sorry) := by
3737
sorry
3838

3939
/--
@@ -42,7 +42,8 @@ product of three distinct primes.
4242
-/
4343
@[category research solved, AMS 11]
4444
theorem erdos_306.variant.integer_three_primes (m : ℕ) (h : 0 < m) :
45-
∃ k : ℕ, ∃ (n : Fin (k + 1) → ℕ), n 0 = 1 ∧ ∀ i, i < k → n i < n (i + 1) ∧
46-
(∀ i ∈ Finset.Icc 1 k, ω (n i) = 3 ∧ Ω (n i) = 3) ∧
47-
m = ∑ i ∈ Finset.Icc 1 k, (1 : ℚ) / (n i) := by
45+
∃ k : ℕ, ∃ (n : Fin (k + 1) → ℕ), n 0 = 1
46+
∀ i, (hik : i < k) → n ⟨i, by omega⟩ < n ⟨(i + 1), by omega⟩ ∧
47+
(∀ i ∈ Finset.Icc 1 (Fin.last k), ω (n i) = 3 ∧ Ω (n i) = 3) ∧
48+
m = ∑ i ∈ Finset.Icc 1 (Fin.last k), (1 : ℚ) / (n i) := by
4849
sorry

FormalConjectures/ErdosProblems/392.lean

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -40,8 +40,8 @@ $$
4040
-/
4141
@[category research solved, AMS 11]
4242
theorem erdos_392 (A : ℕ → ℕ) (h : ∀ n > 0,
43-
IsLeast { t + 1 | (t) (_ : ∃ a : Fin (t + 1) → ℕ, (n)! = ∏ i, a i ∧ Monotone a ∧ a t ≤ n ^ 2) }
44-
(A n)) :
43+
IsLeast { t + 1 | (t) (_ : ∃ a : Fin (t + 1) → ℕ, (n)! = ∏ i, a i ∧
44+
Monotone a ∧ a (Fin.last t) ≤ n ^ 2) } (A n)) :
4545
((fun (n : ℕ) => (A n - n / 2 + n / (2 * Real.log n) : ℝ)) =o[atTop] fun n => n / Real.log n)
4646
:= by
4747
sorry
@@ -55,8 +55,8 @@ $$
5555
@[category research solved, AMS 11]
5656
theorem erdos_392.variants.lower (A : ℕ → ℕ)
5757
(hA : ∀ n > 0, IsLeast
58-
{ t + 1 | (t) (_ : ∃ a : Fin (t + 1) → ℕ, (n)! = ∏ i, a i ∧ Monotone a ∧ a t ≤ n) }
59-
(A n)) :
58+
{ t + 1 | (t) (_ : ∃ a : Fin (t + 1) → ℕ, (n)! = ∏ i, a i ∧
59+
Monotone a ∧ a (Fin.last t) ≤ n) } (A n)) :
6060
(fun (n : ℕ) => (A n - n + n / Real.log n : ℝ)) =o[atTop] fun n => n / Real.log n := by
6161
sorry
6262

FormalConjectures/ErdosProblems/786.lean

Lines changed: 4 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -73,8 +73,9 @@ theorem erdos_786.parts.i.example (A : Set ℕ) (hA : A = { n | n % 4 = 2 }) :
7373
consecutive primes.
7474
-/
7575
def consecutivePrimes {k : ℕ} (p : Fin k.succ → ℕ) :=
76+
-- TODO(firsching): clarify quantifier scope here.
7677
∀ i, (p i).Prime ∧ StrictMono p ∧
77-
∀ i < k, ∀ m ∈ Set.Ioo (p i) (p (i + 1)), ¬m.Prime
78+
∀ i : Fin k, ∀ m ∈ Set.Ioo (p i.castSucc) (p i.succ), ¬m.Prime
7879

7980
-- Reworded slightly from the link.
8081
/--
@@ -95,8 +96,8 @@ theorem erdos_786.parts.i.selfridge (ε : ℝ) (hε : 0 < ε ∧ ε ≤ 1) :
9596
∀ᶠ (p : Fin (k + 2) → ℕ) in atTop, consecutivePrimes p ∧
9697
∑ i ∈ Finset.univ.filter (· < Fin.last _), (1 : ℝ) / p i < 1
9798
1 < ∑ i, (1 : ℝ) / p i →
98-
{ n | ∃! i < k, p i ∣ n }.HasDensity (1 / Real.exp 1 - ε) ∧
99-
{ n | ∃! i < k, p i ∣ n }.IsMulCardSet := by
99+
{ n | ∃! (i : Fin (k + 2)), i < k → p i ∣ n }.HasDensity (1 / Real.exp 1 - ε) ∧
100+
{ n | ∃! (i : Fin (k + 2)), i < k → p i ∣ n }.IsMulCardSet := by
100101
sorry
101102

102103
end Erdos786

FormalConjectures/ForMathlib/Analysis/SpecialFunctions/NthRoot.lean

Lines changed: 0 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -26,11 +26,6 @@ The trap this avoids is that using `rpow`, `(-8 : ℝ) ^ (1/3 : ℝ) = 1`.
2626
This is being upstreamed to Mathlib in leanprover-community/mathlib4#26935.
2727
-/
2828

29-
theorem SignType.pow_odd (s : SignType) (n : ℕ) (hn : Odd n) : s ^ n = s := by
30-
obtain ⟨k, rfl⟩ := hn
31-
rw [pow_add, pow_one, pow_mul, sq]
32-
cases s <;> simp
33-
3429
namespace Real
3530

3631
noncomputable def nthRoot (n : ℕ) (r : ℝ) : ℝ :=

FormalConjectures/ForMathlib/Combinatorics/SimpleGraph/Bipartite.lean

Lines changed: 0 additions & 106 deletions
This file was deleted.

FormalConjectures/ForMathlib/Combinatorics/SimpleGraph/GraphConjectures/Definitions.lean

Lines changed: 1 addition & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -14,9 +14,8 @@ See the License for the specific language governing permissions and
1414
limitations under the License.
1515
-/
1616

17-
import FormalConjectures.ForMathlib.Combinatorics.SimpleGraph.Bipartite
1817
import Mathlib.Combinatorics.SimpleGraph.Acyclic
19-
import Mathlib.Combinatorics.SimpleGraph.Clique
18+
import Mathlib.Combinatorics.SimpleGraph.Bipartite
2019
import Mathlib.Combinatorics.SimpleGraph.Matching
2120
import Mathlib.Data.Real.Archimedean
2221

FormalConjectures/ForMathlib/Combinatorics/SimpleGraph/GraphConjectures/Domination.lean

Lines changed: 1 addition & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -15,6 +15,7 @@ limitations under the License.
1515
-/
1616

1717
import Mathlib.Combinatorics.SimpleGraph.Clique
18+
import Mathlib.Combinatorics.SimpleGraph.Connectivity.Connected
1819

1920
/-
2021
Dominating sets and domination numbers

FormalConjectures/Paper/HartshorneConjecture.lean

Lines changed: 15 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -25,13 +25,26 @@ namespace HartshorneConjecture
2525

2626
open HartshorneConjecture
2727

28+
universe u
29+
2830
open CategoryTheory Limits MvPolynomial AlgebraicGeometry
2931

30-
variable (S : Scheme)
32+
variable (S : Scheme.{u})
3133

3234
namespace AlgebraicGeometry.Scheme
3335

34-
attribute [local instance] CategoryTheory.Types.instConcreteCategory
36+
attribute [local instance] CategoryTheory.Types.instConcreteCategory Types.instFunLike
37+
38+
-- TODO(lezeau): explain/investigate why the following two instances are needed.
39+
40+
local instance (X : TopologicalSpace.Opens S) :
41+
((Opens.grothendieckTopology S).over X).WEqualsLocallyBijective (Type u) :=
42+
CategoryTheory.GrothendieckTopology.instWEqualsLocallyBijectiveTypeHomObjForget
43+
((Opens.grothendieckTopology S).over X)
44+
45+
local instance (X : TopologicalSpace.Opens S) :
46+
((Opens.grothendieckTopology S).over X).WEqualsLocallyBijective (AddCommGrp.{u}):=
47+
inferInstance
3548

3649
/--
3750
A vector bundle over a scheme `S` is a locally free `𝓞_S`-module of finite rank.

FormalConjectures/Util/ForMathlib.lean

Lines changed: 0 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -26,7 +26,6 @@ import FormalConjectures.ForMathlib.Combinatorics.AP.Basic
2626
import FormalConjectures.ForMathlib.Combinatorics.Additive.Basis
2727
import FormalConjectures.ForMathlib.Combinatorics.Additive.Convolution
2828
import FormalConjectures.ForMathlib.Combinatorics.Basic
29-
import FormalConjectures.ForMathlib.Combinatorics.SimpleGraph.Bipartite
3029
import FormalConjectures.ForMathlib.Combinatorics.SimpleGraph.Coloring
3130
import FormalConjectures.ForMathlib.Combinatorics.SimpleGraph.DiamExtra
3231
import FormalConjectures.ForMathlib.Combinatorics.SimpleGraph.GraphConjectures.Definitions

0 commit comments

Comments
 (0)