Skip to content

Commit e36c64d

Browse files
bump to v4.23.0 (#1371)
This PR bumps the toolchain to v4.23.0, and makes small fixes to details to ensure the library builds. --------- Co-authored-by: Yaël Dillies <[email protected]>
1 parent 2dafb29 commit e36c64d

File tree

23 files changed

+67
-86
lines changed

23 files changed

+67
-86
lines changed

FormalConjectures/ErdosProblems/141.lean

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -43,7 +43,7 @@ theorem first_three_odd_primes : ({3, 5, 7} : Set ℕ).IsPrimeProgressionOfLengt
4343
use 1
4444
constructor
4545
· aesop
46-
· norm_num [exists_lt_succ, or_assoc, eq_comm, Set.insert_def,
46+
· norm_num [exists_lt_succ_right, or_assoc, eq_comm, Set.insert_def,
4747
show (2).nth Nat.Prime = 5 from nth_count prime_five,
4848
show (3).nth Nat.Prime = 7 from Nat.nth_count (by decide : (7).Prime)]
4949

@@ -65,7 +65,7 @@ theorem exists_three_consecutive_primes_in_ap : ∃ (s : Set ℕ), s.IsAPAndPrim
6565
unfold Set.IsAPOfLengthWith
6666
constructor
6767
· aesop
68-
· norm_num [exists_lt_succ, or_assoc, eq_comm, Set.insert_def]
68+
· norm_num [exists_lt_succ_right, or_assoc, eq_comm, Set.insert_def]
6969
· exact first_three_odd_primes
7070

7171
/--

FormalConjectures/ErdosProblems/170.lean

Lines changed: 2 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -45,9 +45,8 @@ abbrev TrivialRuler (N : ℕ) : Finset ℕ := Finset.range (N+1)
4545
/-- Sanity Check: the trivial ruler is actually a perfect ruler if $K \geq N$ -/
4646
@[category API, AMS 05]
4747
lemma trivial_ruler_is_perfect (N : ℕ) : TrivialRuler N ∈ PerfectRulersLengthN N := by
48-
simp only [PerfectRulersLengthN, Finset.mem_filter, Finset.mem_powerset, Finset.range_subset,
49-
add_le_add_iff_right]
50-
exact ⟨by rfl, fun k hk => ⟨0, by simp, k, hk, rfl⟩⟩
48+
simp only [PerfectRulersLengthN, Finset.mem_filter, Finset.mem_powerset, Finset.range_subset]
49+
exact ⟨by simp, fun k hk => ⟨0, by simp, k, hk, rfl⟩⟩
5150

5251
/-- We define a function `F N` as the minimum cardinality of an `N`-perfect ruler of length `N`. -/
5352
def F (N : ℕ) : ℕ :=

FormalConjectures/ErdosProblems/26.lean

Lines changed: 4 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -45,7 +45,8 @@ theorem not_isThick_of_geom_one_lt (r : ℕ) (hr : r > 1) : ¬IsThick fun n :
4545

4646
@[category test, AMS 11]
4747
theorem isThick_const {ι : Type*} [Infinite ι] (r : ℕ) (h : r > 0) : IsThick fun _ : ι ↦ r := by
48-
field_simp [IsThick, h, summable_const_iff]
48+
simp only [IsThick, one_div, summable_const_iff, inv_eq_zero, Nat.cast_eq_zero]
49+
exact Nat.ne_zero_of_lt h
4950

5051
/-- The set of multiples of a sequence $(a_i)$ is $\{na_i | n \in \mathbb{N}, i\}$. -/
5152
def MultiplesOf {ι : Type*} (A : ι → ℕ) : Set ℕ := Set.range fun (n, i) ↦ n * A i
@@ -69,7 +70,8 @@ theorem isBehrend_of_contains_one {ι : Type*} (A : ι → ℕ) (h : 1 ∈ Set.r
6970
IsBehrend A := by
7071
rw [IsBehrend, Set.HasDensity]
7172
exact tendsto_atTop_of_eventually_const (i₀ := 1) fun n hn ↦ by
72-
field_simp [multiplesOf_eq_univ A h, Set.partialDensity]
73+
simp [multiplesOf_eq_univ A h, Set.partialDensity]
74+
field_simp
7375

7476
@[category test, AMS 11]
7577
theorem isWeaklyBehrend_of_ge_one {ι : Type*} (A : ι → ℕ) {ε : ℝ} (hε : 1 ≤ ε) :

FormalConjectures/ErdosProblems/40.lean

Lines changed: 2 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -78,7 +78,8 @@ theorem erdos_28_of_erdos_40 (h_erdos_40 : Erdos40 fun _ => True) : type_of% Erd
7878
use n + 1
7979
intro m hm
8080
have : 0 < m := by omega
81-
field_simp [norm_one, Real.norm_natCast, one_mul, Nat.one_le_cast, ge_iff_le]
81+
field_simp
82+
simp only [one_mem, CStarRing.norm_of_mem_unitary, RCLike.norm_natCast, Nat.one_le_cast]
8283
apply Nat.card_pos_iff.mpr
8384
constructor
8485
· by_contra h_empty

FormalConjectures/ForMathlib/AlgebraicGeometry/ProjectiveSpace.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -17,7 +17,7 @@ import Mathlib.AlgebraicGeometry.Limits
1717
import Mathlib.AlgebraicGeometry.ProjectiveSpectrum.Scheme
1818
import Mathlib.RingTheory.MvPolynomial.Homogeneous
1919

20-
-- The contents of this file will be in mathlib as of #26061 which should be merged in 4.21 or 4.22.
20+
-- The contents of this file will be in mathlib as of #26061
2121

2222
universe u v
2323
open CategoryTheory Limits MvPolynomial AlgebraicGeometry

FormalConjectures/ForMathlib/Analysis/SpecialFunctions/Log/Basic.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -14,8 +14,8 @@ See the License for the specific language governing permissions and
1414
limitations under the License.
1515
-/
1616

17+
import Mathlib.Analysis.Complex.ExponentialBounds
1718
import Mathlib.Analysis.SpecialFunctions.Log.Basic
18-
import Mathlib.Data.Complex.ExponentialBounds
1919
import Mathlib.Tactic
2020

2121
-- TODO(mercuris): define a recursive version of this for better usability?

FormalConjectures/ForMathlib/Combinatorics/Additive/Convolution.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -62,7 +62,7 @@ lemma sumRep_def (A : Set ℕ) (n : ℕ) :
6262
open PowerSeries
6363

6464
theorem sumRep_eq_powerSeries_coeff (A : Set ℕ) (n : ℕ) : (sumRep A n : ℕ) =
65-
((PowerSeries.mk (𝟙_A)) * (PowerSeries.mk (𝟙_A)) : PowerSeries ℕ).coeff n := by
65+
((PowerSeries.mk (𝟙_A)) * (PowerSeries.mk (𝟙_A)) : PowerSeries ℕ).coeff n := by
6666
simp [sumRep, sumConv, indicatorOne, indicator, PowerSeries.coeff_mul, PowerSeries.coeff_mk]
6767

6868
end AdditiveCombinatorics

FormalConjectures/ForMathlib/Computability/TuringMachine/PostTuringMachine.lean

Lines changed: 0 additions & 9 deletions
Original file line numberDiff line numberDiff line change
@@ -17,15 +17,6 @@ limitations under the License.
1717
import Mathlib.Computability.PostTuringMachine
1818
import Mathlib.Logic.Relation
1919

20-
theorem Part.eq_of_get_eq_get {σ : Type*} {a b : Part σ} (ha : a.Dom) (hb : b.Dom)
21-
(hab : a.get ha = b.get hb) : a = b := by
22-
ext
23-
rw [← Part.eq_get_iff_mem ha, ← Part.eq_get_iff_mem hb, hab]
24-
25-
theorem Part.eq_iff_of_dom {σ : Type*} {a b : Part σ} (ha : a.Dom) (hb : b.Dom) :
26-
a.get ha = b.get hb ↔ a = b :=
27-
fun H ↦ Part.eq_of_get_eq_get ha hb H, fun H ↦ Part.get_eq_get_of_eq a ha H⟩
28-
2920
theorem Part.get_eq_get {σ : Type*} {a b : Part σ} (ha : a.Dom) (hb : a.get ha ∈ b) : a = b := by
3021
have hb' : b.Dom := Part.dom_iff_mem.mpr ⟨a.get ha, hb⟩
3122
rwa [← Part.eq_get_iff_mem hb', Part.eq_iff_of_dom ha hb'] at hb

FormalConjectures/ForMathlib/Data/Finset/Empty.lean

Lines changed: 0 additions & 25 deletions
This file was deleted.

FormalConjectures/ForMathlib/Data/Set/Density.lean

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -63,7 +63,7 @@ noncomputable def lowerDensity {β : Type*} [Preorder β] [LocallyFiniteOrderBot
6363
theorem lowerDensity_le_one {β : Type*} [Preorder β] [LocallyFiniteOrderBot β]
6464
(S : Set β) (A : Set β := Set.univ) : S.lowerDensity A ≤ 1 := by
6565
by_cases h : atTop (α := β) = ⊥
66-
· field_simp [h, Set.lowerDensity, Filter.liminf_eq]
66+
· simp [h, Set.lowerDensity, Filter.liminf_eq]
6767
· have : (atTop (α := β)).NeBot := ⟨h⟩
6868
apply Real.sSup_le (fun x hx ↦ ?_) one_pos.le
6969
simpa using hx.mono fun y hy ↦ hy.trans (Set.partialDensity_le_one _ _ y)
@@ -105,7 +105,7 @@ elements has density one. -/
105105
theorem univ {β : Type*} [PartialOrder β] [LocallyFiniteOrder β] [OrderBot β] [Nontrivial β] :
106106
(@Set.univ β).HasDensity 1 := by
107107
by_cases h : atTop (α := β) = ⊥
108-
· field_simp [h, HasDensity]
108+
· simp [h, HasDensity]
109109
· simp [HasDensity, partialDensity]
110110
let ⟨b, hb⟩ := Set.Iio_eventually_ncard_ne_zero β
111111
refine tendsto_const_nhds.congr' ?_

0 commit comments

Comments
 (0)