@@ -19,7 +19,7 @@ import FormalConjectures.Util.ProblemImports
1919/-!
2020# Erdős Problem 848
2121
22- Is the maximum size of a set $A \subseteq \{ 1, \ldots , N\} $ such that $ab + 1$ is never
22+ Is the maximum size of a set $A \subseteq \{ 1, \dots , N\} $ such that $ab + 1$ is never
2323squarefree (for all $a, b \in A$) achieved by taking those $n \equiv 7 \pmod{25}$?
2424
2525*References:*
@@ -34,44 +34,52 @@ squarefree (for all $a, b \in A$) achieved by taking those $n \equiv 7 \pmod{25}
3434
3535namespace Erdos848
3636
37- /-- A set A has the non-squarefree product property if ab + 1 is not squarefree
38- for all a, b ∈ A. -/
37+ /-- A set $A$ has the non-squarefree product property if $ ab + 1$ is not squarefree
38+ for all $ a, b ∈ A$ . -/
3939def NonSquarefreeProductProp (A : Finset ℕ) : Prop :=
4040 ∀ a ∈ A, ∀ b ∈ A, ¬Squarefree (a * b + 1 )
4141
42- /-- The candidate extremal set: {n ∈ {0, … , N-1} : n ≡ 7 (mod 25)} . -/
42+ /-- The candidate extremal set: $ \ { n ∈ \ { 0, \dots , N-1\ } : n ≡ 7 (mod 25)\} $ . -/
4343def A₇ (N : ℕ) : Finset ℕ :=
4444 (Finset.range N).filter (fun n => n % 25 = 7 )
4545
46- /-- The Erdős Problem 848 statement for a fixed N: any set A ⊆ {0, …, N-1} with
47- the non-squarefree product property has cardinality at most |A₇(N)|. -/
48- def Problem848Statement (N : ℕ) : Prop :=
46+ /-- Internal statement used to define `Erdos848`. -/
47+ def statement (N : ℕ) : Prop :=
4948 ∀ A : Finset ℕ, A ⊆ Finset.range N → NonSquarefreeProductProp A →
5049 A.card ≤ (A₇ N).card
5150
51+ end Erdos848
52+
53+ /-- The Erdős Problem 848 statement for a fixed $N$: any set $A ⊆ \{ 0, \dots, N-1\} $ with
54+ the non-squarefree product property has cardinality at most $|A₇(N)|$. -/
55+ def Erdos848 (N : ℕ) : Prop :=
56+ Erdos848.statement N
57+
58+ namespace Erdos848
59+
5260/-- **Erdős Problem 848 (Original)**
5361
54- Is the maximum size of a set A ⊆ {1, … , N} such that ab + 1 is never squarefree
55- (for all a, b ∈ A) achieved by taking those n ≡ 7 (mod 25) ?
62+ Is the maximum size of a set $ A ⊆ \ { 1, \dots , N\} $ such that $ ab + 1$ is never squarefree
63+ (for all $ a, b ∈ A$ ) achieved by taking those $ n ≡ 7 \pmod{25}$ ?
5664
57- This asks whether `Problem848Statement N` holds for all N . -/
65+ This asks whether `Erdos848 N` holds for all $N$ (formulated using `A ⊆ Finset.range N`) . -/
5866@ [category research open , AMS 11 ]
59- theorem erdos_848 : ∀ N, Problem848Statement N := by
67+ theorem erdos_848 : answer( sorry ) ↔ ∀ N, Erdos848 N := by
6068 sorry
6169
6270/-- **Erdős Problem 848 (Sawhney 2025, Asymptotic)**
6371
64- There exists N₀ such that for all N ≥ N₀, if A ⊆ {1, … , N} satisfies that ab + 1
65- is never squarefree for all a, b ∈ A, then |A| ≤ |{n ≤ N : n ≡ 7 (mod 25)}| .
72+ There exists $N₀$ such that for all $ N ≥ N₀$ , if $ A ⊆ \ { 1, \dots , N\} $ satisfies that $ ab + 1$
73+ is never squarefree for all $ a, b ∈ A$ , then $ |A| ≤ |\ { n ≤ N : n ≡ 7 \pmod{25} \} |$ .
6674
67- More precisely, Sawhney proves: there exist absolute constants η > 0 and N₀
68- such that for all N ≥ N₀, if |A| ≥ (1/25 - η)N then A ⊆ {n : n ≡ 7 (mod 25)} or
69- A ⊆ {n : n ≡ 18 (mod 25)} .
75+ More precisely, Sawhney proves: there exist absolute constants $ η > 0$ and $N₀$
76+ such that for all $ N ≥ N₀$ , if $ |A| ≥ (1/25 - η)N$ then $ A ⊆ \ { n : n ≡ 7 \pmod{25} \} $ or
77+ $ A ⊆ \ { n : n ≡ 18 \pmod{25} \} $ .
7078
7179A complete formal Lean 4 proof (0 sorries) is available at:
7280https://github.com/The-Obstacle-Is-The-Way/erdos-banger -/
7381@ [category research formally solved using lean4 at "https://github.com/The-Obstacle-Is-The-Way/erdos-banger/blob/main/formal/lean/Erdos/Problem848.lean" , AMS 11 ]
74- theorem erdos_848_asymptotic : ∃ N₀ : ℕ, ∀ N ≥ N₀, Problem848Statement N := by
82+ theorem erdos_848_asymptotic : ∀ᶠ N in Filter.atTop, Erdos848 N := by
7583 sorry
7684
7785end Erdos848
0 commit comments