Skip to content

Commit e9b313a

Browse files
fix: address reviewer feedback (mo271, felixpernegger)
- Rename Problem848Statement → Erdos848 - Use answer(sorry) ↔ pattern for question - Use ∀ᶠ N in Filter.atTop for asymptotic - LaTeX formatting in docstrings - Restructure namespace to avoid linter warning
1 parent b615966 commit e9b313a

File tree

1 file changed

+25
-17
lines changed

1 file changed

+25
-17
lines changed

FormalConjectures/ErdosProblems/848.lean

Lines changed: 25 additions & 17 deletions
Original file line numberDiff line numberDiff line change
@@ -19,7 +19,7 @@ import FormalConjectures.Util.ProblemImports
1919
/-!
2020
# Erdős Problem 848
2121
22-
Is the maximum size of a set $A \subseteq \{1, \ldots, N\}$ such that $ab + 1$ is never
22+
Is the maximum size of a set $A \subseteq \{1, \dots, N\}$ such that $ab + 1$ is never
2323
squarefree (for all $a, b \in A$) achieved by taking those $n \equiv 7 \pmod{25}$?
2424
2525
*References:*
@@ -34,44 +34,52 @@ squarefree (for all $a, b \in A$) achieved by taking those $n \equiv 7 \pmod{25}
3434

3535
namespace Erdos848
3636

37-
/-- A set A has the non-squarefree product property if ab + 1 is not squarefree
38-
for all a, b ∈ A. -/
37+
/-- A set $A$ has the non-squarefree product property if $ab + 1$ is not squarefree
38+
for all $a, b ∈ A$. -/
3939
def NonSquarefreeProductProp (A : Finset ℕ) : Prop :=
4040
∀ a ∈ A, ∀ b ∈ A, ¬Squarefree (a * b + 1)
4141

42-
/-- The candidate extremal set: {n ∈ {0, , N-1} : n ≡ 7 (mod 25)}. -/
42+
/-- The candidate extremal set: $\{n ∈ \{0, \dots, N-1\} : n ≡ 7 (mod 25)\}$. -/
4343
def A₇ (N : ℕ) : Finset ℕ :=
4444
(Finset.range N).filter (fun n => n % 25 = 7)
4545

46-
/-- The Erdős Problem 848 statement for a fixed N: any set A ⊆ {0, …, N-1} with
47-
the non-squarefree product property has cardinality at most |A₇(N)|. -/
48-
def Problem848Statement (N : ℕ) : Prop :=
46+
/-- Internal statement used to define `Erdos848`. -/
47+
def statement (N : ℕ) : Prop :=
4948
∀ A : Finset ℕ, A ⊆ Finset.range N → NonSquarefreeProductProp A →
5049
A.card ≤ (A₇ N).card
5150

51+
end Erdos848
52+
53+
/-- The Erdős Problem 848 statement for a fixed $N$: any set $A ⊆ \{0, \dots, N-1\}$ with
54+
the non-squarefree product property has cardinality at most $|A₇(N)|$. -/
55+
def Erdos848 (N : ℕ) : Prop :=
56+
Erdos848.statement N
57+
58+
namespace Erdos848
59+
5260
/-- **Erdős Problem 848 (Original)**
5361
54-
Is the maximum size of a set A ⊆ {1, , N} such that ab + 1 is never squarefree
55-
(for all a, b ∈ A) achieved by taking those n ≡ 7 (mod 25)?
62+
Is the maximum size of a set $A ⊆ \{1, \dots, N\}$ such that $ab + 1$ is never squarefree
63+
(for all $a, b ∈ A$) achieved by taking those $n ≡ 7 \pmod{25}$?
5664
57-
This asks whether `Problem848Statement N` holds for all N. -/
65+
This asks whether `Erdos848 N` holds for all $N$ (formulated using `A ⊆ Finset.range N`). -/
5866
@[category research open, AMS 11]
59-
theorem erdos_848 : ∀ N, Problem848Statement N := by
67+
theorem erdos_848 : answer(sorry) ↔ ∀ N, Erdos848 N := by
6068
sorry
6169

6270
/-- **Erdős Problem 848 (Sawhney 2025, Asymptotic)**
6371
64-
There exists N₀ such that for all N ≥ N₀, if A ⊆ {1, , N} satisfies that ab + 1
65-
is never squarefree for all a, b ∈ A, then |A| ≤ |{n ≤ N : n ≡ 7 (mod 25)}|.
72+
There exists $N₀$ such that for all $N ≥ N₀$, if $A ⊆ \{1, \dots, N\}$ satisfies that $ab + 1$
73+
is never squarefree for all $a, b ∈ A$, then $|A| ≤ |\{n ≤ N : n ≡ 7 \pmod{25}\}|$.
6674
67-
More precisely, Sawhney proves: there exist absolute constants η > 0 and N₀
68-
such that for all N ≥ N₀, if |A| ≥ (1/25 - η)N then A ⊆ {n : n ≡ 7 (mod 25)} or
69-
A ⊆ {n : n ≡ 18 (mod 25)}.
75+
More precisely, Sawhney proves: there exist absolute constants $η > 0$ and $N₀$
76+
such that for all $N ≥ N₀$, if $|A| ≥ (1/25 - η)N$ then $A ⊆ \{n : n ≡ 7 \pmod{25}\}$ or
77+
$A ⊆ \{n : n ≡ 18 \pmod{25}\}$.
7078
7179
A complete formal Lean 4 proof (0 sorries) is available at:
7280
https://github.com/The-Obstacle-Is-The-Way/erdos-banger -/
7381
@[category research formally solved using lean4 at "https://github.com/The-Obstacle-Is-The-Way/erdos-banger/blob/main/formal/lean/Erdos/Problem848.lean", AMS 11]
74-
theorem erdos_848_asymptotic : ∃ N₀ : ℕ, ∀ N ≥ N₀, Problem848Statement N := by
82+
theorem erdos_848_asymptotic : ∀ᶠ N in Filter.atTop, Erdos848 N := by
7583
sorry
7684

7785
end Erdos848

0 commit comments

Comments
 (0)