|
| 1 | +from fusion_surrogates.tglfnn_ukaea import config as tglfnn_ukaea_config |
| 2 | +from fusion_surrogates.tglfnn_ukaea import tglfnn_ukaea_model |
| 3 | +import jax |
| 4 | +import jax.numpy as jnp |
| 5 | +from torax._src import state |
| 6 | +from torax._src.config import runtime_params_slice |
| 7 | +from torax._src.geometry import geometry |
| 8 | +from torax._src.pedestal_model import pedestal_model as pedestal_model_lib |
| 9 | +from torax._src.transport_model import tglf_based_transport_model |
| 10 | +from torax._src.transport_model import transport_model as transport_model_lib |
| 11 | + |
| 12 | + |
| 13 | +class TGLFNNukaeaTransportModel( |
| 14 | + tglf_based_transport_model.TGLFBasedTransportModel |
| 15 | +): |
| 16 | + |
| 17 | + def __init__( |
| 18 | + self, |
| 19 | + config_path: str, |
| 20 | + stats_path: str, |
| 21 | + efe_gb_pt: str, |
| 22 | + efi_gb_pt: str, |
| 23 | + pfi_gb_pt: str, |
| 24 | + ): |
| 25 | + self._config_path = config_path |
| 26 | + self._stats_path = stats_path |
| 27 | + self._efe_gb_pt = efe_gb_pt |
| 28 | + self._efi_gb_pt = efi_gb_pt |
| 29 | + self._pfi_gb_pt = pfi_gb_pt |
| 30 | + |
| 31 | + self.model = tglfnn_ukaea_model.TGLFNNukaeaModel( |
| 32 | + config=tglfnn_ukaea_config.TGLFNNukaeaModelConfig.load(config_path), |
| 33 | + stats=tglfnn_ukaea_config.TGLFNNukaeaModelStats.load(stats_path), |
| 34 | + ) |
| 35 | + self.model.load_params( |
| 36 | + efe_gb_pt=efe_gb_pt, efi_gb_pt=efi_gb_pt, pfi_gb_pt=pfi_gb_pt |
| 37 | + ) |
| 38 | + super().__init__() |
| 39 | + self._frozen = True |
| 40 | + |
| 41 | + def _make_input_tensor( |
| 42 | + self, |
| 43 | + transport, |
| 44 | + geo, |
| 45 | + core_profiles, |
| 46 | + ) -> (tglf_based_transport_model.TGLFInputs, jax.Array): |
| 47 | + tglf_inputs = self._prepare_tglf_inputs(transport, geo, core_profiles) |
| 48 | + |
| 49 | + # Note: TGLFNN-ukaea uses a different definition of the magnetic shear |
| 50 | + # to TGLF. This is not the same as s_hat in s-alpha geometry. |
| 51 | + s_hat = (tglf_inputs.r_minor / tglf_inputs.q) ** 2 * tglf_inputs.q_prime |
| 52 | + tglfnn_inputs = jnp.stack( |
| 53 | + [ |
| 54 | + tglf_inputs.RLNS_1, |
| 55 | + tglf_inputs.RLTS_1, |
| 56 | + tglf_inputs.RLTS_2, |
| 57 | + tglf_inputs.TAUS_2, |
| 58 | + tglf_inputs.RMIN_LOC, |
| 59 | + tglf_inputs.DRMAJDX_LOC, |
| 60 | + tglf_inputs.Q_LOC, |
| 61 | + s_hat, |
| 62 | + tglf_inputs.XNUE, |
| 63 | + tglf_inputs.KAPPA_LOC, |
| 64 | + tglf_inputs.S_KAPPA_LOC, |
| 65 | + tglf_inputs.DELTA_LOC, |
| 66 | + tglf_inputs.S_DELTA_LOC, |
| 67 | + tglf_inputs.BETAE, |
| 68 | + tglf_inputs.ZEFF, |
| 69 | + ], |
| 70 | + axis=-1, |
| 71 | + ) |
| 72 | + return tglf_inputs, tglfnn_inputs |
| 73 | + |
| 74 | + def _call_implementation( |
| 75 | + self, |
| 76 | + transport_dynamic_runtime_params: tglf_based_transport_model.DynamicRuntimeParams, |
| 77 | + dynamic_runtime_params_slice: runtime_params_slice.DynamicRuntimeParamsSlice, |
| 78 | + geo: geometry.Geometry, |
| 79 | + core_profiles: state.CoreProfiles, |
| 80 | + pedestal_model_output: pedestal_model_lib.PedestalModelOutput, |
| 81 | + ) -> transport_model_lib.TurbulentTransport: |
| 82 | + tglf_inputs, tglfnn_inputs = self._make_input_tensor( |
| 83 | + transport=transport_dynamic_runtime_params, |
| 84 | + geo=geo, |
| 85 | + core_profiles=core_profiles, |
| 86 | + ) |
| 87 | + predictions = self.model.predict(tglfnn_inputs) |
| 88 | + |
| 89 | + # TODO: expose variance output |
| 90 | + return self._make_core_transport( |
| 91 | + qi=predictions["efi_gb"][..., tglfnn_ukaea_config.MEAN_OUTPUT], |
| 92 | + qe=predictions["efe_gb"][..., tglfnn_ukaea_config.MEAN_OUTPUT], |
| 93 | + # TODO: TGLFNN outputs pfi, TORAX wants pfe |
| 94 | + pfe=predictions["pfi_gb"][..., tglfnn_ukaea_config.MEAN_OUTPUT], |
| 95 | + quasilinear_inputs=tglf_inputs, |
| 96 | + transport=transport_dynamic_runtime_params, |
| 97 | + geo=geo, |
| 98 | + core_profiles=core_profiles, |
| 99 | + # TODO: explain choices here |
| 100 | + gradient_reference_length=1, |
| 101 | + gyrobohm_flux_reference_length=1, |
| 102 | + ) |
| 103 | + |
| 104 | + def __hash__(self) -> int: |
| 105 | + combined_path = ( |
| 106 | + self._config_path |
| 107 | + + self._stats_path |
| 108 | + + self._efe_gb_pt |
| 109 | + + self._efi_gb_pt |
| 110 | + + self._pfi_gb_pt |
| 111 | + ) |
| 112 | + return hash(combined_path) |
| 113 | + |
| 114 | + def __eq__(self, other) -> bool: |
| 115 | + return ( |
| 116 | + self._config_path == other._config_path |
| 117 | + and self._stats_path == other._stats_path |
| 118 | + and self._efe_gb_pt == other._efe_gb_pt |
| 119 | + and self._efi_gb_pt == other._efi_gb_pt |
| 120 | + and self._pfi_gb_pt == other._pfi_gb_pt |
| 121 | + ) |
0 commit comments