|
| 1 | +# -*- coding: utf-8 -*- |
| 2 | +# Copyright 2023 Google LLC |
| 3 | +# |
| 4 | +# Licensed under the Apache License, Version 2.0 (the "License"); |
| 5 | +# you may not use this file except in compliance with the License. |
| 6 | +# You may obtain a copy of the License at |
| 7 | +# |
| 8 | +# http://www.apache.org/licenses/LICENSE-2.0 |
| 9 | +# |
| 10 | +# Unless required by applicable law or agreed to in writing, software |
| 11 | +# distributed under the License is distributed on an "AS IS" BASIS, |
| 12 | +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 13 | +# See the License for the specific language governing permissions and |
| 14 | +# limitations under the License. |
| 15 | +from absl.testing import absltest |
| 16 | + |
| 17 | +import google.generativeai as genai |
| 18 | +import pathlib |
| 19 | + |
| 20 | +media = pathlib.Path(__file__).parents[1] / "third_party" |
| 21 | + |
| 22 | + |
| 23 | + |
| 24 | + |
| 25 | + |
| 26 | +class UnitTests(absltest.TestCase): |
| 27 | + def test_tokens_text_only(self): |
| 28 | + # [START tokens_text_only] |
| 29 | + model = genai.GenerativeModel("models/gemini-1.5-flash") |
| 30 | + print(model.count_tokens("The quick brown fox jumps over the lazy dog.")) |
| 31 | + # [END tokens_text_only] |
| 32 | + |
| 33 | + def test_tokens_chat(self): |
| 34 | + # [START tokens_chat] |
| 35 | + model = genai.GenerativeModel("models/gemini-1.5-flash") |
| 36 | + chat = model.start_chat( |
| 37 | + history=[ |
| 38 | + {"role": "user", "parts": "Hi, my name is Bob."}, |
| 39 | + {"role": "model", "parts": "Hi Bob!"}, |
| 40 | + ] |
| 41 | + ) |
| 42 | + model.count_tokens(chat.history) |
| 43 | + |
| 44 | + from google.generativeai.types.content_types import to_contents |
| 45 | + |
| 46 | + model.count_tokens(chat.history + to_contents("What is the meaning of life?")) |
| 47 | + # [END tokens_chat] |
| 48 | + |
| 49 | + def test_tokens_multimodal_image_inline(self): |
| 50 | + # [START tokens_multimodal_image_inline] |
| 51 | + model = genai.GenerativeModel("models/gemini-1.5-flash") |
| 52 | + import PIL |
| 53 | + |
| 54 | + organ = PIL.Image.open(media / "organ.jpg") |
| 55 | + print(model.count_tokens(["Tell me about this instrument", organ])) |
| 56 | + # [END tokens_multimodal_image_inline] |
| 57 | + |
| 58 | + def test_tokens_multimodal_image_file_api(self): |
| 59 | + # [START tokens_multimodal_image_file_api] |
| 60 | + model = genai.GenerativeModel("models/gemini-1.5-flash") |
| 61 | + organ_upload = genai.upload_file(media / "organ.jpg") |
| 62 | + print(model.count_tokens(["Tell me about this instrument", organ_upload])) |
| 63 | + # [END tokens_multimodal_image_file_api] |
| 64 | + |
| 65 | + def test_tokens_video_audio_file_api(self): |
| 66 | + # [START tokens_video_audio_file_api] |
| 67 | + model = genai.GenerativeModel("models/gemini-1.5-flash") |
| 68 | + audio_upload = genai.upload_file(media / "sample.mp3") |
| 69 | + print(model.count_tokens(audio_upload)) |
| 70 | + # [END tokens_video_audio_file_api] |
| 71 | + |
| 72 | + def test_tokens_cached_content(self): |
| 73 | + # [START tokens_cached_content] |
| 74 | + document = genai.upload_file(path=media / "a11.txt") |
| 75 | + model_name = "gemini-1.5-flash-001" |
| 76 | + cache = genai.caching.CachedContent.create( |
| 77 | + model=model_name, |
| 78 | + contents=[document], |
| 79 | + ) |
| 80 | + print(genai.GenerativeModel().count_tokens(cache)) |
| 81 | + # [END tokens_cached_content] |
| 82 | + cache.delete() # Clear |
| 83 | + |
| 84 | + def test_tokens_system_instruction(self): |
| 85 | + # [START tokens_system_instruction] |
| 86 | + document = genai.upload_file(path=media / "a11.txt") |
| 87 | + model = genai.GenerativeModel("models/gemini-1.5-flash-001", |
| 88 | + system_instruction="You are an expert analyzing transcripts. Give a summary of this document.") |
| 89 | + print(model.count_tokens(document)) |
| 90 | + # [END tokens_system_instruction] |
| 91 | + |
| 92 | + def test_tokens_tools(self): |
| 93 | + # [START tokens_tools] |
| 94 | + def add(a: float, b: float): |
| 95 | + """returns a + b.""" |
| 96 | + return a + b |
| 97 | + |
| 98 | + |
| 99 | + def subtract(a: float, b: float): |
| 100 | + """returns a - b.""" |
| 101 | + return a - b |
| 102 | + |
| 103 | + |
| 104 | + def multiply(a: float, b: float): |
| 105 | + """returns a * b.""" |
| 106 | + return a * b |
| 107 | + |
| 108 | + |
| 109 | + def divide(a: float, b: float): |
| 110 | + """returns a / b.""" |
| 111 | + return a / b |
| 112 | + |
| 113 | + model = genai.GenerativeModel("models/gemini-1.5-flash-001", |
| 114 | + tools=[add, subtract, multiply, divide]) |
| 115 | + |
| 116 | + print(model.count_tokens("I have 57 cats, each owns 44 mittens, how many mittens is that in total?")) |
| 117 | + # [END tokens_tools] |
| 118 | + |
| 119 | + |
| 120 | +if __name__ == "__main__": |
| 121 | + absltest.main() |
0 commit comments