@@ -69,7 +69,29 @@ Finetune on CIFAR10:
6969 python main.py --mode=train --model_name=efficientnetv2-s --dataset_cfg=cifar10Ft --model_dir=$DIR --hparam_str="train.ft_init_ckpt=$PRETRAIN_CKPT_PATH"
7070
7171
72- ## 4. Inference
72+ ## 4. Build a pretrained model and finetuning
73+
74+
75+ You can directly use this code to build a model like this:
76+
77+ mode = tf.keras.models.Sequential([
78+ tf.keras.layers.InputLayer(input_shape=[224, 224, 3]),
79+ effnetv2_model.get_model('efficientnetv2-b0', include_top=False, pretrained=True),
80+ tf.keras.layers.Dropout(rate=0.2),
81+ tf.keras.layers.Dense(4, activation='softmax'),
82+ ])
83+
84+ Or you can also load them from tfhub:
85+
86+ hub_url = 'gs://cloud-tpu-checkpoints/efficientnet/v2/hub/efficientnetv2-b0/feature-vector'
87+ model = tf.keras.Sequential([
88+ tf.keras.layers.InputLayer(input_shape=[224, 224, 3]),
89+ hub.KerasLayer(hub_url, trainable=do_fine_tuning),
90+ tf.keras.layers.Dropout(rate=0.2),
91+ tf.keras.layers.Dense(4, activation='softmax'),
92+ ])
93+
94+ ## 5. Inference
7395
7496 python infer.py --model_name=efficientnetv2-m --model_dir=$MODEL_DIR
7597
0 commit comments