@@ -362,7 +362,7 @@ def make_source_dataset(self, index, num_hosts):
362362 # Read the data from disk in parallel
363363 dataset = dataset .interleave (
364364 self .fetch_dataset ,
365- num_parallel_calls = tf .data .experimental . AUTOTUNE ,
365+ num_parallel_calls = tf .data .AUTOTUNE ,
366366 deterministic = self .debug )
367367
368368 if self .is_training and self .cache :
@@ -403,20 +403,20 @@ def _input_fn(self, batch_size, current_host, num_hosts):
403403 dataset = self .make_source_dataset (current_host , num_hosts )
404404 dataset = dataset .map (
405405 self .dataset_parser ,
406- num_parallel_calls = tf .data .experimental . AUTOTUNE ).batch (
406+ num_parallel_calls = tf .data .AUTOTUNE ).batch (
407407 batch_size , drop_remainder = True )
408408
409409 # Apply Mixup
410410 if self .is_training and (self .mixup_alpha or self .cutmix_alpha ):
411411 dataset = dataset .map (
412412 functools .partial (self .mixing , batch_size , self .mixup_alpha ,
413413 self .cutmix_alpha ),
414- num_parallel_calls = tf .data .experimental . AUTOTUNE )
414+ num_parallel_calls = tf .data .AUTOTUNE )
415415
416416 # Assign static batch size dimension
417417 dataset = dataset .map (
418418 functools .partial (self .set_shapes , batch_size ),
419- num_parallel_calls = tf .data .experimental . AUTOTUNE )
419+ num_parallel_calls = tf .data .AUTOTUNE )
420420
421421 def transpose_image (features ):
422422 # NHWC -> HWCN
@@ -426,14 +426,14 @@ def transpose_image(features):
426426 if self .transpose_image :
427427 dataset = dataset .map (
428428 lambda features , labels : (transpose_image (features ), labels ),
429- num_parallel_calls = tf .data .experimental . AUTOTUNE )
429+ num_parallel_calls = tf .data .AUTOTUNE )
430430
431431 # Prefetch overlaps in-feed with training
432- dataset = dataset .prefetch (tf .data .experimental . AUTOTUNE )
432+ dataset = dataset .prefetch (tf .data .AUTOTUNE )
433433 options = tf .data .Options ()
434- options .experimental_deterministic = self .debug
435- options .experimental_threading .max_intra_op_parallelism = 1
436- options .experimental_threading .private_threadpool_size = 48
434+ options .deterministic = self .debug
435+ options .threading .max_intra_op_parallelism = 1
436+ options .threading .private_threadpool_size = 48
437437 dataset = dataset .with_options (options )
438438 return dataset
439439
@@ -542,7 +542,7 @@ def _input_fn(self, batch_size, current_host, num_hosts):
542542 ds = ds .repeat ()
543543
544544 ds = ds .map (
545- self .preprocess , num_parallel_calls = tf .data .experimental . AUTOTUNE )
545+ self .preprocess , num_parallel_calls = tf .data .AUTOTUNE )
546546 ds = ds .prefetch (1 )
547547
548548 ds = ds .batch (batch_size , drop_remainder = True )
0 commit comments