Skip to content

Commit c3b3e0d

Browse files
Merge pull request #1651 from xuzhenwu:main
PiperOrigin-RevId: 871523922
2 parents 2c32e5a + 9929124 commit c3b3e0d

File tree

4 files changed

+46
-33
lines changed

4 files changed

+46
-33
lines changed

catalog/pml_evapotranspiration/projects_pml_evapotranspiration_PML_OUTPUT_PML_V22a.jsonnet

Lines changed: 10 additions & 11 deletions
Original file line numberDiff line numberDiff line change
@@ -27,8 +27,8 @@ local catalog_base_url = ee_const.catalog_base;
2727
version: '2.2a',
2828
'gee:type': ee_const.gee_type.image_collection,
2929
description: |||
30-
The dataset is produced by the Large Scale Hydrology Lab, which specializes in advancing global and regional water cycle research
31-
through big data analytics and advanced hydrological modeling.
30+
The dataset is produced by the Large Scale Hydrology Lab, which specializes in advancing global and
31+
regional water cycle research by synthesizing multi-source Earth observations with process-based modeling.
3232
3333
The PML-V2.2a product provides 500m 8-day resolution global terrestrial evapotranspiration (ET)
3434
and gross primary production (GPP) from 2000 to 2024. Driven by MSWEP and MSWX, this version
@@ -39,8 +39,9 @@ local catalog_base_url = ee_const.catalog_base;
3939
and reliable basin-scale water-balance performance (NSE: 0.89–0.91). This MODIS-based
4040
record is optimized for high-resolution near-present monitoring.
4141
42-
This dataset is part of the broader PML-V2.2 suite. For the long-term 43-year consolidated
43-
record (PML-V2.2b/c at 0.1° with different remote sensing forcing), please visit the [TPDC data repository](https://doi.org/10.11888/Terre.tpdc.303314).
42+
This dataset is part of the broader PML-V2.2 suite. For the long-term and consolidated record
43+
(1982-near present, PML-V2.2a/b/c at 0.1° resolution with different remote sensing forcings),
44+
please visit the [TPDC data repository](https://doi.org/10.11888/Terre.tpdc.303314).
4445
|||,
4546
license: license.id,
4647
links: ee.standardLinks(subdir, id) + [
@@ -56,7 +57,7 @@ local catalog_base_url = ee_const.catalog_base;
5657
//'water-carbon',
5758
],
5859
providers: [
59-
ee.producer_provider('Large Scale Hydrology Lab', 'https://scholar.google.com/citations?user=t5iGFeAAAAAJ&hl=en'),
60+
ee.producer_provider('Large Scale Hydrology Lab', 'https://zhang-hydrolab.github.io/'),
6061
ee.host_provider(self_ee_catalog_url),
6162
],
6263
extent: ee.extent(-180.0, -60.0, 180.0, 90.0, '2000-03-05T00:00:00Z', null),
@@ -96,19 +97,17 @@ local catalog_base_url = ee_const.catalog_base;
9697
{
9798
name: 'PET',
9899
description: |||
99-
Potential evapotranspiration (PET). Calculated using the Shuttleworth-simplified
100-
version of the Penman equation, which provides estimates of evaporation
101-
from water bodies, snow, and ice.
100+
Potential evapotranspiration (PET) estimated using the Shuttleworth-simplified
101+
Penman equation.
102102
|||,
103103
'gee:units': units.millimeter_per_day,
104104
'gee:scale': 0.01
105105
},
106106
{
107107
name: 'Ew',
108108
description: |||
109-
Evaporation from water bodies, snow, and ice. Calculated using the
110-
Penman equation, which is considered a good estimate of actual
111-
evaporation for these surfaces.
109+
Evaporation from water bodies, snow, and ice, estimated using the
110+
Penman equation with unlimited water supply.
112111
|||,
113112
'gee:units': units.millimeter_per_day,
114113
'gee:scale': 0.01
Lines changed: 14 additions & 8 deletions
Original file line numberDiff line numberDiff line change
@@ -1,19 +1,25 @@
11
var dataset = ee.ImageCollection('projects/pml_evapotranspiration/PML/OUTPUT/PML_V22a');
22

3-
// Scale the first image to physical units (0.01 scale factor)
4-
var firstImage = dataset.first().multiply(0.01);
5-
3+
// Convert 8-day averages to annual estimate with 0.01 scale factor
4+
var annualImage = dataset.filterDate('2024-01-01', '2024-12-31')
5+
.select('ET')
6+
.mean()
7+
.multiply(365)
8+
.multiply(0.01);
9+
10+
// Final unit: mm yr-1
611
var visualization = {
7-
bands: ['GPP'],
12+
bands: ['ET'],
813
min: 0.0,
9-
max: 9.0,
14+
max: 1600,
1015
palette: [
11-
'a50026', 'd73027', 'f46d43', 'fdae61', 'fee08b', 'ffffbf',
12-
'd9ef8b', 'a6d96a', '66bd63', '1a9850', '006837',
16+
"#A02323", "#C80000", "#FF0000", "#FF6E00", "#FFAA00", "#FFE132",
17+
"#FFFFC8", "#D2F5FF", "#A0D2FF", "#00BFFF", "#1E90FF", "#4169E1",
18+
"#0000CD", "#000096"
1319
]
1420
};
1521

1622
Map.setCenter(0.0, 15.0, 2);
1723

1824
Map.addLayer(
19-
firstImage, visualization, 'PML_V2.2a Gross Primary Product (GPP)');
25+
annualImage, visualization, 'PML_V2.2a Evapotranspiration (ET)');

examples/pml_evapotranspiration/projects_pml_evapotranspiration_PML_OUTPUT_PML_V22a_preview.js

Lines changed: 20 additions & 12 deletions
Original file line numberDiff line numberDiff line change
@@ -1,25 +1,33 @@
11
var dataset = ee.ImageCollection('projects/pml_evapotranspiration/PML/OUTPUT/PML_V22a');
22

3+
// Convert 8-day averages to annual estimate with 0.01 scale factor
4+
var image = dataset.filterDate('2024-01-01', '2024-12-31')
5+
.select('ET')
6+
.mean()
7+
.multiply(365)
8+
.multiply(0.01);
9+
10+
// Final unit: mm yr-1
311
var visualization = {
12+
bands: ['ET'],
413
min: 0.0,
5-
max: 9.0,
14+
max: 1600,
615
palette: [
7-
'a50026', 'd73027', 'f46d43', 'fdae61', 'fee08b', 'ffffbf',
8-
'd9ef8b', 'a6d96a', '66bd63', '1a9850', '006837',
16+
"#A02323", "#C80000", "#FF0000", "#FF6E00", "#FFAA00", "#FFE132",
17+
"#FFFFC8", "#D2F5FF", "#A0D2FF", "#00BFFF", "#1E90FF", "#4169E1",
18+
"#0000CD", "#000096"
919
]
1020
};
1121

12-
var gray = 150;
13-
var background = ee.Image.rgb(gray, gray, gray).visualize({min: 0, max: 255});
14-
15-
// Calculate mean GPP and apply the 0.01 scale factor
16-
var image = dataset.select('GPP')
17-
.filterDate('2001-01-01', '2023-12-31')
18-
.mean()
19-
.multiply(0.01);
22+
Map.setCenter(0.0, 15.0, 2);
2023

2124
Map.addLayer(
22-
image, visualization, 'PML_V2.2a Gross Primary Product (GPP)');
25+
image, visualization, 'PML_V2.2a Evapotranspiration (ET)');
26+
27+
28+
var white = 255;
29+
var background = ee.Image.rgb(white, white, white).visualize({min: 0, max: 255});
30+
2331

2432
// Visualize the image and layer it over the gray background
2533
var visualizedImage = image.visualize(visualization);

owners/pml_evapotranspiration.jsonnet

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -2,9 +2,9 @@
22
"id": "pml_evapotranspiration",
33
"homeBucket": "projects/pml_evapotranspiration",
44
"name": "Large Scale Hydrology Lab",
5-
"description": "The Large Scale Hydrology Lab specializes in advancing global and regional water cycle research through big data analytics and advanced hydrological modeling. We are widely recognized for the Penman-Monteith-Leuning (PML) model and its high-accuracy, long-term evapotranspiration (ET) and gross primary productivity (GPP) products. By integrating remote sensing, machine learning, and surface process modeling, our goal is to provide essential data infrastructure for monitoring water-carbon coupling and understanding climate change impacts at a global scale.",
5+
"description": "The Large Scale Hydrology Lab specializes in advancing global and regional water cycle research by synthesizing multi-source Earth observations with process-based modeling. We are widely recognized for the Penman-Monteith-Leuning (PML) model and its high-accuracy, long-term evapotranspiration (ET) and gross primary productivity (GPP) products. Rooted in hydrology and water resources, our goal is to provide essential data support for monitoring large-scale hydrological processes, water-carbon coupling, and climate change impacts.",
66
"type": "PUBLISHER",
7-
"link": "https://scholar.google.com/citations?user=t5iGFeAAAAAJ&hl=en",
7+
"link": "https://zhang-hydrolab.github.io/",
88
"imageLink": "https://storage.googleapis.com/lshl_public/ee-publisher/lshl_ee_publisher_image.png",
99
"logo": "https://storage.googleapis.com/lshl_public/ee-publisher/lshl_logo.png",
1010
"contactDisplay": "Large Scale Hydrology Lab",

0 commit comments

Comments
 (0)