|
14 | 14 | # limitations under the License.
|
15 | 15 | """util function to create a tf_agent."""
|
16 | 16 |
|
17 |
| -from typing import Callable |
| 17 | +from typing import Any, Callable, Dict |
18 | 18 |
|
| 19 | +import abc |
19 | 20 | import gin
|
20 | 21 | import tensorflow as tf
|
21 | 22 |
|
22 | 23 | from tf_agents.agents import tf_agent
|
23 | 24 | from tf_agents.agents.behavioral_cloning import behavioral_cloning_agent
|
24 | 25 | from tf_agents.agents.dqn import dqn_agent
|
25 | 26 | from tf_agents.agents.ppo import ppo_agent
|
| 27 | +from tf_agents.specs import tensor_spec |
26 | 28 | from tf_agents.typing import types
|
27 | 29 |
|
28 |
| -from compiler_opt.rl import constant |
29 | 30 | from compiler_opt.rl import constant_value_network
|
30 | 31 | from compiler_opt.rl.distributed import agent as distributed_ppo_agent
|
31 | 32 |
|
32 | 33 |
|
33 |
| -def _create_behavioral_cloning_agent( |
34 |
| - time_step_spec: types.NestedTensorSpec, action_spec: types.NestedTensorSpec, |
35 |
| - preprocessing_layers: types.NestedLayer, |
36 |
| - policy_network: types.Network) -> tf_agent.TFAgent: |
37 |
| - """Creates a behavioral_cloning_agent.""" |
38 |
| - |
39 |
| - network = policy_network( |
40 |
| - time_step_spec.observation, |
41 |
| - action_spec, |
42 |
| - preprocessing_layers=preprocessing_layers, |
43 |
| - name='QNetwork') |
44 |
| - |
45 |
| - return behavioral_cloning_agent.BehavioralCloningAgent( |
46 |
| - time_step_spec, action_spec, cloning_network=network, num_outer_dims=2) |
47 |
| - |
48 |
| - |
49 |
| -def _create_dqn_agent(time_step_spec: types.NestedTensorSpec, |
50 |
| - action_spec: types.NestedTensorSpec, |
51 |
| - preprocessing_layers: types.NestedLayer, |
52 |
| - policy_network: types.Network) -> tf_agent.TFAgent: |
53 |
| - """Creates a dqn_agent.""" |
54 |
| - network = policy_network( |
55 |
| - time_step_spec.observation, |
56 |
| - action_spec, |
57 |
| - preprocessing_layers=preprocessing_layers, |
58 |
| - name='QNetwork') |
59 |
| - |
60 |
| - return dqn_agent.DqnAgent(time_step_spec, action_spec, q_network=network) |
61 |
| - |
62 |
| - |
63 |
| -def _create_ppo_agent(time_step_spec: types.NestedTensorSpec, |
64 |
| - action_spec: types.NestedTensorSpec, |
65 |
| - preprocessing_layers: types.NestedLayer, |
66 |
| - policy_network: types.Network) -> tf_agent.TFAgent: |
67 |
| - """Creates a ppo_agent.""" |
68 |
| - |
69 |
| - actor_network = policy_network( |
70 |
| - time_step_spec.observation, |
71 |
| - action_spec, |
72 |
| - preprocessing_layers=preprocessing_layers, |
73 |
| - name='ActorDistributionNetwork') |
74 |
| - |
75 |
| - critic_network = constant_value_network.ConstantValueNetwork( |
76 |
| - time_step_spec.observation, name='ConstantValueNetwork') |
77 |
| - |
78 |
| - return ppo_agent.PPOAgent( |
79 |
| - time_step_spec, |
80 |
| - action_spec, |
81 |
| - actor_net=actor_network, |
82 |
| - value_net=critic_network) |
83 |
| - |
84 |
| - |
85 |
| -def _create_ppo_distributed_agent( |
86 |
| - time_step_spec: types.NestedTensorSpec, action_spec: types.NestedTensorSpec, |
87 |
| - preprocessing_layers: types.NestedLayer, |
88 |
| - policy_network: types.Network) -> tf_agent.TFAgent: |
89 |
| - """Creates a ppo_distributed agent.""" |
90 |
| - actor_network = policy_network( |
91 |
| - time_step_spec.observation, |
92 |
| - action_spec, |
93 |
| - preprocessing_layers=preprocessing_layers, |
94 |
| - preprocessing_combiner=tf.keras.layers.Concatenate(), |
95 |
| - name='ActorDistributionNetwork') |
96 |
| - |
97 |
| - critic_network = constant_value_network.ConstantValueNetwork( |
98 |
| - time_step_spec.observation, name='ConstantValueNetwork') |
99 |
| - |
100 |
| - return distributed_ppo_agent.MLGOPPOAgent( |
101 |
| - time_step_spec, |
102 |
| - action_spec, |
103 |
| - optimizer=tf.keras.optimizers.Adam(learning_rate=4e-4, epsilon=1e-5), |
104 |
| - actor_net=actor_network, |
105 |
| - value_net=critic_network, |
106 |
| - value_pred_loss_coef=0.0, |
107 |
| - entropy_regularization=0.01, |
108 |
| - importance_ratio_clipping=0.2, |
109 |
| - discount_factor=1.0, |
110 |
| - gradient_clipping=1.0, |
111 |
| - debug_summaries=False, |
112 |
| - value_clipping=None, |
113 |
| - aggregate_losses_across_replicas=True, |
114 |
| - loss_scaling_factor=1.0) |
| 34 | +class AgentConfig(metaclass=abc.ABCMeta): |
| 35 | + """Agent creation and data processing hook-ups.""" |
| 36 | + |
| 37 | + def __init__(self, *, time_step_spec: types.NestedTensorSpec, |
| 38 | + action_spec: types.NestedTensorSpec): |
| 39 | + self._time_step_spec = time_step_spec |
| 40 | + self._action_spec = action_spec |
| 41 | + |
| 42 | + @property |
| 43 | + def time_step_spec(self): |
| 44 | + return self._time_step_spec |
| 45 | + |
| 46 | + @property |
| 47 | + def action_spec(self): |
| 48 | + return self._action_spec |
| 49 | + |
| 50 | + @abc.abstractmethod |
| 51 | + def create_agent(self, preprocessing_layers: tf.keras.layers.Layer, |
| 52 | + policy_network: types.Network) -> tf_agent.TFAgent: |
| 53 | + """Specific agent configs must implement this.""" |
| 54 | + raise NotImplementedError() |
| 55 | + |
| 56 | + def get_policy_info_parsing_dict( |
| 57 | + self) -> Dict[str, tf.io.FixedLenSequenceFeature]: |
| 58 | + """Return the parsing dict for the policy info.""" |
| 59 | + return {} |
| 60 | + |
| 61 | + # pylint: disable=unused-argument |
| 62 | + def process_parsed_sequence_and_get_policy_info( |
| 63 | + self, parsed_sequence: Dict[str, Any]) -> Dict[str, Dict[str, Any]]: |
| 64 | + """Function to process parsed_sequence and to return policy_info. |
| 65 | +
|
| 66 | + Args: |
| 67 | + parsed_sequence: A dict from feature_name to feature_value parsed from TF |
| 68 | + SequenceExample. |
| 69 | +
|
| 70 | + Returns: |
| 71 | + A nested policy_info for given agent. |
| 72 | + """ |
| 73 | + return {} |
115 | 74 |
|
116 | 75 |
|
117 | 76 | @gin.configurable
|
118 |
| -def create_agent(agent_name: constant.AgentName, |
119 |
| - time_step_spec: types.NestedTensorSpec, |
120 |
| - action_spec: types.NestedTensorSpec, |
| 77 | +def create_agent(agent_config: AgentConfig, |
121 | 78 | preprocessing_layer_creator: Callable[[types.TensorSpec],
|
122 | 79 | tf.keras.layers.Layer],
|
123 |
| - policy_network: types.Network) -> tf_agent.TFAgent: |
124 |
| - """Creates a tfa.agents.TFAgent object. |
125 |
| -
|
126 |
| - Args: |
127 |
| - agent_name: AgentName, enum type of the agent to create. |
128 |
| - time_step_spec: A `TimeStep` spec of the expected time_steps. |
129 |
| - action_spec: A nest of BoundedTensorSpec representing the actions. |
130 |
| - preprocessing_layer_creator: A callable returns feature processing layer |
131 |
| - given observation_spec. |
132 |
| - policy_network: A tf_agents.networks.Network class. |
133 |
| -
|
134 |
| - Returns: |
135 |
| - tf_agent: A tfa.agents.TFAgent object. |
136 |
| -
|
137 |
| - Raises: |
138 |
| - ValueError: If `agent_name` is not in supported list. |
139 |
| - """ |
140 |
| - assert policy_network is not None |
141 |
| - assert agent_name is not None |
142 |
| - |
143 |
| - preprocessing_layers = tf.nest.map_structure(preprocessing_layer_creator, |
144 |
| - time_step_spec.observation) |
145 |
| - |
146 |
| - if agent_name == constant.AgentName.BEHAVIORAL_CLONE: |
147 |
| - return _create_behavioral_cloning_agent(time_step_spec, action_spec, |
148 |
| - preprocessing_layers, |
149 |
| - policy_network) |
150 |
| - elif agent_name == constant.AgentName.DQN: |
151 |
| - return _create_dqn_agent(time_step_spec, action_spec, preprocessing_layers, |
152 |
| - policy_network) |
153 |
| - elif agent_name == constant.AgentName.PPO: |
154 |
| - return _create_ppo_agent(time_step_spec, action_spec, preprocessing_layers, |
155 |
| - policy_network) |
156 |
| - elif agent_name == constant.AgentName.PPO_DISTRIBUTED: |
157 |
| - return _create_ppo_distributed_agent(time_step_spec, action_spec, |
158 |
| - preprocessing_layers, policy_network) |
159 |
| - else: |
160 |
| - raise ValueError(f'Unknown agent: {agent_name}') |
| 80 | + policy_network: types.Network): |
| 81 | + """Gin configurable wrapper of AgentConfig.create_agent. |
| 82 | + Works around the fact that class members aren't gin-configurable.""" |
| 83 | + preprocessing_layers = tf.nest.map_structure( |
| 84 | + preprocessing_layer_creator, agent_config.time_step_spec.observation) |
| 85 | + return agent_config.create_agent(preprocessing_layers, policy_network) |
| 86 | + |
| 87 | + |
| 88 | +@gin.configurable(module='agents') |
| 89 | +class BCAgentConfig(AgentConfig): |
| 90 | + """Behavioral Cloning agent configuration.""" |
| 91 | + |
| 92 | + def create_agent(self, preprocessing_layers: tf.keras.layers.Layer, |
| 93 | + policy_network: types.Network) -> tf_agent.TFAgent: |
| 94 | + """Creates a behavioral_cloning_agent.""" |
| 95 | + |
| 96 | + network = policy_network( |
| 97 | + self.time_step_spec.observation, |
| 98 | + self.action_spec, |
| 99 | + preprocessing_layers=preprocessing_layers, |
| 100 | + name='QNetwork') |
| 101 | + |
| 102 | + return behavioral_cloning_agent.BehavioralCloningAgent( |
| 103 | + self.time_step_spec, |
| 104 | + self.action_spec, |
| 105 | + cloning_network=network, |
| 106 | + num_outer_dims=2) |
| 107 | + |
| 108 | + |
| 109 | +@gin.configurable(module='agents') |
| 110 | +class DQNAgentConfig(AgentConfig): |
| 111 | + """DQN agent configuration.""" |
| 112 | + |
| 113 | + def create_agent(self, preprocessing_layers: tf.keras.layers.Layer, |
| 114 | + policy_network: types.Network) -> tf_agent.TFAgent: |
| 115 | + """Creates a dqn_agent.""" |
| 116 | + network = policy_network( |
| 117 | + self.time_step_spec.observation, |
| 118 | + self.action_spec, |
| 119 | + preprocessing_layers=preprocessing_layers, |
| 120 | + name='QNetwork') |
| 121 | + |
| 122 | + return dqn_agent.DqnAgent( |
| 123 | + self.time_step_spec, self.action_spec, q_network=network) |
| 124 | + |
| 125 | + |
| 126 | +@gin.configurable(module='agents') |
| 127 | +class PPOAgentConfig(AgentConfig): |
| 128 | + """PPO/Reinforce agent configuration.""" |
| 129 | + |
| 130 | + def create_agent(self, preprocessing_layers: tf.keras.layers.Layer, |
| 131 | + policy_network: types.Network) -> tf_agent.TFAgent: |
| 132 | + """Creates a ppo_agent.""" |
| 133 | + |
| 134 | + actor_network = policy_network( |
| 135 | + self.time_step_spec.observation, |
| 136 | + self.action_spec, |
| 137 | + preprocessing_layers=preprocessing_layers, |
| 138 | + name='ActorDistributionNetwork') |
| 139 | + |
| 140 | + critic_network = constant_value_network.ConstantValueNetwork( |
| 141 | + self.time_step_spec.observation, name='ConstantValueNetwork') |
| 142 | + |
| 143 | + return ppo_agent.PPOAgent( |
| 144 | + self.time_step_spec, |
| 145 | + self.action_spec, |
| 146 | + actor_net=actor_network, |
| 147 | + value_net=critic_network) |
| 148 | + |
| 149 | + def get_policy_info_parsing_dict( |
| 150 | + self) -> Dict[str, tf.io.FixedLenSequenceFeature]: |
| 151 | + if tensor_spec.is_discrete(self._action_spec): |
| 152 | + return { |
| 153 | + 'CategoricalProjectionNetwork_logits': |
| 154 | + tf.io.FixedLenSequenceFeature( |
| 155 | + shape=(self._action_spec.maximum - self._action_spec.minimum + |
| 156 | + 1), |
| 157 | + dtype=tf.float32) |
| 158 | + } |
| 159 | + else: |
| 160 | + return { |
| 161 | + 'NormalProjectionNetwork_scale': |
| 162 | + tf.io.FixedLenSequenceFeature(shape=(), dtype=tf.float32), |
| 163 | + 'NormalProjectionNetwork_loc': |
| 164 | + tf.io.FixedLenSequenceFeature(shape=(), dtype=tf.float32) |
| 165 | + } |
| 166 | + |
| 167 | + def process_parsed_sequence_and_get_policy_info( |
| 168 | + self, parsed_sequence: Dict[str, Any]) -> Dict[str, Dict[str, Any]]: |
| 169 | + if tensor_spec.is_discrete(self._action_spec): |
| 170 | + policy_info = { |
| 171 | + 'dist_params': { |
| 172 | + 'logits': parsed_sequence['CategoricalProjectionNetwork_logits'] |
| 173 | + } |
| 174 | + } |
| 175 | + del parsed_sequence['CategoricalProjectionNetwork_logits'] |
| 176 | + else: |
| 177 | + policy_info = { |
| 178 | + 'dist_params': { |
| 179 | + 'scale': parsed_sequence['NormalProjectionNetwork_scale'], |
| 180 | + 'loc': parsed_sequence['NormalProjectionNetwork_loc'] |
| 181 | + } |
| 182 | + } |
| 183 | + del parsed_sequence['NormalProjectionNetwork_scale'] |
| 184 | + del parsed_sequence['NormalProjectionNetwork_loc'] |
| 185 | + return policy_info |
| 186 | + |
| 187 | + |
| 188 | +@gin.configurable(module='agents') |
| 189 | +class DistributedPPOAgentConfig(PPOAgentConfig): |
| 190 | + """Distributed PPO/Reinforce agent configuration.""" |
| 191 | + |
| 192 | + def _create_agent_implt(self, preprocessing_layers: tf.keras.layers.Layer, |
| 193 | + policy_network: types.Network) -> tf_agent.TFAgent: |
| 194 | + """Creates a ppo_distributed agent.""" |
| 195 | + actor_network = policy_network( |
| 196 | + self.time_step_spec.observation, |
| 197 | + self.action_spec, |
| 198 | + preprocessing_layers=preprocessing_layers, |
| 199 | + preprocessing_combiner=tf.keras.layers.Concatenate(), |
| 200 | + name='ActorDistributionNetwork') |
| 201 | + |
| 202 | + critic_network = constant_value_network.ConstantValueNetwork( |
| 203 | + self.time_step_spec.observation, name='ConstantValueNetwork') |
| 204 | + |
| 205 | + return distributed_ppo_agent.MLGOPPOAgent( |
| 206 | + self.time_step_spec, |
| 207 | + self.action_spec, |
| 208 | + optimizer=tf.keras.optimizers.Adam(learning_rate=4e-4, epsilon=1e-5), |
| 209 | + actor_net=actor_network, |
| 210 | + value_net=critic_network, |
| 211 | + value_pred_loss_coef=0.0, |
| 212 | + entropy_regularization=0.01, |
| 213 | + importance_ratio_clipping=0.2, |
| 214 | + discount_factor=1.0, |
| 215 | + gradient_clipping=1.0, |
| 216 | + debug_summaries=False, |
| 217 | + value_clipping=None, |
| 218 | + aggregate_losses_across_replicas=True, |
| 219 | + loss_scaling_factor=1.0) |
0 commit comments