|
| 1 | +# coding=utf-8 |
| 2 | +# Copyright 2020 Google LLC |
| 3 | +# |
| 4 | +# Licensed under the Apache License, Version 2.0 (the "License"); |
| 5 | +# you may not use this file except in compliance with the License. |
| 6 | +# You may obtain a copy of the License at |
| 7 | +# |
| 8 | +# http://www.apache.org/licenses/LICENSE-2.0 |
| 9 | +# |
| 10 | +# Unless required by applicable law or agreed to in writing, software |
| 11 | +# distributed under the License is distributed on an "AS IS" BASIS, |
| 12 | +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 13 | +# See the License for the specific language governing permissions and |
| 14 | +# limitations under the License. |
| 15 | +"""Tests for policy_utils.""" |
| 16 | + |
| 17 | +from absl.testing import absltest |
| 18 | +import numpy as np |
| 19 | +import os |
| 20 | +import tensorflow as tf |
| 21 | +from tf_agents.networks import actor_distribution_network |
| 22 | +from tf_agents.policies import actor_policy, tf_policy |
| 23 | + |
| 24 | +from compiler_opt.es import policy_utils |
| 25 | +from compiler_opt.rl import policy_saver, registry |
| 26 | +from compiler_opt.rl.inlining import config as inlining_config |
| 27 | +from compiler_opt.rl.inlining import InliningConfig |
| 28 | +from compiler_opt.rl.regalloc import config as regalloc_config |
| 29 | +from compiler_opt.rl.regalloc import RegallocEvictionConfig, regalloc_network |
| 30 | + |
| 31 | + |
| 32 | +class ConfigTest(absltest.TestCase): |
| 33 | + |
| 34 | + # TODO(abenalaast): Issue #280 |
| 35 | + def test_inlining_config(self): |
| 36 | + problem_config = registry.get_configuration(implementation=InliningConfig) |
| 37 | + time_step_spec, action_spec = problem_config.get_signature_spec() |
| 38 | + quantile_file_dir = os.path.join('compiler_opt', 'rl', 'inlining', 'vocab') |
| 39 | + creator = inlining_config.get_observation_processing_layer_creator( |
| 40 | + quantile_file_dir=quantile_file_dir, |
| 41 | + with_sqrt=False, |
| 42 | + with_z_score_normalization=False) |
| 43 | + layers = tf.nest.map_structure(creator, time_step_spec.observation) |
| 44 | + |
| 45 | + actor_network = actor_distribution_network.ActorDistributionNetwork( |
| 46 | + input_tensor_spec=time_step_spec.observation, |
| 47 | + output_tensor_spec=action_spec, |
| 48 | + preprocessing_layers=layers, |
| 49 | + preprocessing_combiner=tf.keras.layers.Concatenate(), |
| 50 | + fc_layer_params=(64, 64, 64, 64), |
| 51 | + dropout_layer_params=None, |
| 52 | + activation_fn=tf.keras.activations.relu) |
| 53 | + |
| 54 | + policy = actor_policy.ActorPolicy( |
| 55 | + time_step_spec=time_step_spec, |
| 56 | + action_spec=action_spec, |
| 57 | + actor_network=actor_network) |
| 58 | + |
| 59 | + self.assertIsNotNone(policy) |
| 60 | + self.assertIsInstance( |
| 61 | + policy._actor_network, # pylint: disable=protected-access |
| 62 | + actor_distribution_network.ActorDistributionNetwork) |
| 63 | + |
| 64 | + # TODO(abenalaast): Issue #280 |
| 65 | + def test_regalloc_config(self): |
| 66 | + problem_config = registry.get_configuration( |
| 67 | + implementation=RegallocEvictionConfig) |
| 68 | + time_step_spec, action_spec = problem_config.get_signature_spec() |
| 69 | + quantile_file_dir = os.path.join('compiler_opt', 'rl', 'regalloc', 'vocab') |
| 70 | + creator = regalloc_config.get_observation_processing_layer_creator( |
| 71 | + quantile_file_dir=quantile_file_dir, |
| 72 | + with_sqrt=False, |
| 73 | + with_z_score_normalization=False) |
| 74 | + layers = tf.nest.map_structure(creator, time_step_spec.observation) |
| 75 | + |
| 76 | + actor_network = regalloc_network.RegAllocNetwork( |
| 77 | + input_tensor_spec=time_step_spec.observation, |
| 78 | + output_tensor_spec=action_spec, |
| 79 | + preprocessing_layers=layers, |
| 80 | + preprocessing_combiner=tf.keras.layers.Concatenate(), |
| 81 | + fc_layer_params=(64, 64, 64, 64), |
| 82 | + dropout_layer_params=None, |
| 83 | + activation_fn=tf.keras.activations.relu) |
| 84 | + |
| 85 | + policy = actor_policy.ActorPolicy( |
| 86 | + time_step_spec=time_step_spec, |
| 87 | + action_spec=action_spec, |
| 88 | + actor_network=actor_network) |
| 89 | + |
| 90 | + self.assertIsNotNone(policy) |
| 91 | + self.assertIsInstance( |
| 92 | + policy._actor_network, # pylint: disable=protected-access |
| 93 | + regalloc_network.RegAllocNetwork) |
| 94 | + |
| 95 | + |
| 96 | +class VectorTest(absltest.TestCase): |
| 97 | + |
| 98 | + expected_variable_shapes = [(71, 64), (64), (64, 64), (64), (64, 64), (64), |
| 99 | + (64, 64), (64), (64, 2), (2)] |
| 100 | + expected_length_of_a_perturbation = sum( |
| 101 | + np.prod(shape) for shape in expected_variable_shapes) |
| 102 | + params = np.arange(expected_length_of_a_perturbation, dtype=np.float32) |
| 103 | + POLICY_NAME = 'test_policy_name' |
| 104 | + |
| 105 | + # TODO(abenalaast): Issue #280 |
| 106 | + def test_set_vectorized_parameters_for_policy(self): |
| 107 | + # create a policy |
| 108 | + problem_config = registry.get_configuration(implementation=InliningConfig) |
| 109 | + time_step_spec, action_spec = problem_config.get_signature_spec() |
| 110 | + quantile_file_dir = os.path.join('compiler_opt', 'rl', 'inlining', 'vocab') |
| 111 | + creator = inlining_config.get_observation_processing_layer_creator( |
| 112 | + quantile_file_dir=quantile_file_dir, |
| 113 | + with_sqrt=False, |
| 114 | + with_z_score_normalization=False) |
| 115 | + layers = tf.nest.map_structure(creator, time_step_spec.observation) |
| 116 | + |
| 117 | + actor_network = actor_distribution_network.ActorDistributionNetwork( |
| 118 | + input_tensor_spec=time_step_spec.observation, |
| 119 | + output_tensor_spec=action_spec, |
| 120 | + preprocessing_layers=layers, |
| 121 | + preprocessing_combiner=tf.keras.layers.Concatenate(), |
| 122 | + fc_layer_params=(64, 64, 64, 64), |
| 123 | + dropout_layer_params=None, |
| 124 | + activation_fn=tf.keras.activations.relu) |
| 125 | + |
| 126 | + policy = actor_policy.ActorPolicy( |
| 127 | + time_step_spec=time_step_spec, |
| 128 | + action_spec=action_spec, |
| 129 | + actor_network=actor_network) |
| 130 | + |
| 131 | + # save the policy |
| 132 | + saver = policy_saver.PolicySaver({VectorTest.POLICY_NAME: policy}) |
| 133 | + testing_path = self.create_tempdir() |
| 134 | + policy_save_path = os.path.join(testing_path, 'temp_output', 'policy') |
| 135 | + saver.save(policy_save_path) |
| 136 | + |
| 137 | + # set the values of the policy variables |
| 138 | + policy_utils.set_vectorized_parameters_for_policy(policy, VectorTest.params) |
| 139 | + # iterate through variables and check their shapes and values |
| 140 | + # deep copy params in order to destructively iterate over values |
| 141 | + expected_values = [*VectorTest.params] |
| 142 | + for i, variable in enumerate(policy.variables()): # pylint: disable=not-callable |
| 143 | + self.assertEqual(variable.shape, VectorTest.expected_variable_shapes[i]) |
| 144 | + variable_values = variable.numpy().flatten() |
| 145 | + np.testing.assert_array_almost_equal( |
| 146 | + expected_values[:len(variable_values)], variable_values) |
| 147 | + expected_values = expected_values[len(variable_values):] |
| 148 | + # all values in the copy should have been removed at this point |
| 149 | + self.assertEmpty(expected_values) |
| 150 | + |
| 151 | + # get saved model to test a loaded policy |
| 152 | + load_path = os.path.join(policy_save_path, VectorTest.POLICY_NAME) |
| 153 | + sm = tf.saved_model.load(load_path) |
| 154 | + self.assertNotIsInstance(sm, tf_policy.TFPolicy) |
| 155 | + policy_utils.set_vectorized_parameters_for_policy(sm, VectorTest.params) |
| 156 | + # deep copy params in order to destructively iterate over values |
| 157 | + expected_values = [*VectorTest.params] |
| 158 | + for i, variable in enumerate(sm.model_variables): |
| 159 | + self.assertEqual(variable.shape, VectorTest.expected_variable_shapes[i]) |
| 160 | + variable_values = variable.numpy().flatten() |
| 161 | + np.testing.assert_array_almost_equal( |
| 162 | + expected_values[:len(variable_values)], variable_values) |
| 163 | + expected_values = expected_values[len(variable_values):] |
| 164 | + # all values in the copy should have been removed at this point |
| 165 | + self.assertEmpty(expected_values) |
| 166 | + |
| 167 | + # TODO(abenalaast): Issue #280 |
| 168 | + def test_get_vectorized_parameters_from_policy(self): |
| 169 | + # create a policy |
| 170 | + problem_config = registry.get_configuration(implementation=InliningConfig) |
| 171 | + time_step_spec, action_spec = problem_config.get_signature_spec() |
| 172 | + quantile_file_dir = os.path.join('compiler_opt', 'rl', 'inlining', 'vocab') |
| 173 | + creator = inlining_config.get_observation_processing_layer_creator( |
| 174 | + quantile_file_dir=quantile_file_dir, |
| 175 | + with_sqrt=False, |
| 176 | + with_z_score_normalization=False) |
| 177 | + layers = tf.nest.map_structure(creator, time_step_spec.observation) |
| 178 | + |
| 179 | + actor_network = actor_distribution_network.ActorDistributionNetwork( |
| 180 | + input_tensor_spec=time_step_spec.observation, |
| 181 | + output_tensor_spec=action_spec, |
| 182 | + preprocessing_layers=layers, |
| 183 | + preprocessing_combiner=tf.keras.layers.Concatenate(), |
| 184 | + fc_layer_params=(64, 64, 64, 64), |
| 185 | + dropout_layer_params=None, |
| 186 | + activation_fn=tf.keras.activations.relu) |
| 187 | + |
| 188 | + policy = actor_policy.ActorPolicy( |
| 189 | + time_step_spec=time_step_spec, |
| 190 | + action_spec=action_spec, |
| 191 | + actor_network=actor_network) |
| 192 | + |
| 193 | + # save the policy |
| 194 | + saver = policy_saver.PolicySaver({VectorTest.POLICY_NAME: policy}) |
| 195 | + testing_path = self.create_tempdir() |
| 196 | + policy_save_path = os.path.join(testing_path, 'temp_output', 'policy') |
| 197 | + saver.save(policy_save_path) |
| 198 | + |
| 199 | + # functionality verified in previous test |
| 200 | + policy_utils.set_vectorized_parameters_for_policy(policy, VectorTest.params) |
| 201 | + # vectorize and check if the outcome is the same as the start |
| 202 | + output = policy_utils.get_vectorized_parameters_from_policy(policy) |
| 203 | + np.testing.assert_array_almost_equal(output, VectorTest.params) |
| 204 | + |
| 205 | + # get saved model to test a loaded policy |
| 206 | + load_path = os.path.join(policy_save_path, VectorTest.POLICY_NAME) |
| 207 | + sm = tf.saved_model.load(load_path) |
| 208 | + self.assertNotIsInstance(sm, tf_policy.TFPolicy) |
| 209 | + policy_utils.set_vectorized_parameters_for_policy(sm, VectorTest.params) |
| 210 | + # vectorize and check if the outcome is the same as the start |
| 211 | + output = policy_utils.get_vectorized_parameters_from_policy(sm) |
| 212 | + np.testing.assert_array_almost_equal(output, VectorTest.params) |
| 213 | + |
| 214 | + # TODO(abenalaast): Issue #280 |
| 215 | + def test_tfpolicy_and_loaded_policy_produce_same_variable_order(self): |
| 216 | + # create a policy |
| 217 | + problem_config = registry.get_configuration(implementation=InliningConfig) |
| 218 | + time_step_spec, action_spec = problem_config.get_signature_spec() |
| 219 | + quantile_file_dir = os.path.join('compiler_opt', 'rl', 'inlining', 'vocab') |
| 220 | + creator = inlining_config.get_observation_processing_layer_creator( |
| 221 | + quantile_file_dir=quantile_file_dir, |
| 222 | + with_sqrt=False, |
| 223 | + with_z_score_normalization=False) |
| 224 | + layers = tf.nest.map_structure(creator, time_step_spec.observation) |
| 225 | + |
| 226 | + actor_network = actor_distribution_network.ActorDistributionNetwork( |
| 227 | + input_tensor_spec=time_step_spec.observation, |
| 228 | + output_tensor_spec=action_spec, |
| 229 | + preprocessing_layers=layers, |
| 230 | + preprocessing_combiner=tf.keras.layers.Concatenate(), |
| 231 | + fc_layer_params=(64, 64, 64, 64), |
| 232 | + dropout_layer_params=None, |
| 233 | + activation_fn=tf.keras.activations.relu) |
| 234 | + |
| 235 | + policy = actor_policy.ActorPolicy( |
| 236 | + time_step_spec=time_step_spec, |
| 237 | + action_spec=action_spec, |
| 238 | + actor_network=actor_network) |
| 239 | + |
| 240 | + # save the policy |
| 241 | + saver = policy_saver.PolicySaver({VectorTest.POLICY_NAME: policy}) |
| 242 | + testing_path = self.create_tempdir() |
| 243 | + policy_save_path = os.path.join(testing_path, 'temp_output', 'policy') |
| 244 | + saver.save(policy_save_path) |
| 245 | + |
| 246 | + # set the values of the variables |
| 247 | + policy_utils.set_vectorized_parameters_for_policy(policy, VectorTest.params) |
| 248 | + # save the changes |
| 249 | + saver.save(policy_save_path) |
| 250 | + # vectorize the tfpolicy |
| 251 | + tf_params = policy_utils.get_vectorized_parameters_from_policy(policy) |
| 252 | + |
| 253 | + # get loaded policy |
| 254 | + load_path = os.path.join(policy_save_path, VectorTest.POLICY_NAME) |
| 255 | + sm = tf.saved_model.load(load_path) |
| 256 | + # vectorize the loaded policy |
| 257 | + loaded_params = policy_utils.get_vectorized_parameters_from_policy(sm) |
| 258 | + |
| 259 | + # assert that they result in the same order of values |
| 260 | + np.testing.assert_array_almost_equal(tf_params, loaded_params) |
| 261 | + |
| 262 | + |
| 263 | +if __name__ == '__main__': |
| 264 | + absltest.main() |
0 commit comments