Skip to content

why need to calculate reward_stat? I see llvm_trainer.train use reward from sequence_example.reward #332

@18liumin

Description

@18liumin

why calculate reward_stat, I see llvm_trainer.train use reward from sequence_example.reward

"""sequence_example = _overwrite_trajectory_reward(
sequence_example=sequence_example,
reward=_calculate_reward(
policy=policy_reward, baseline=moving_average_reward))
"""

https://github.com/google/ml-compiler-opt/blob/0f895e325491793efbc45a1675f9a71f7c8c4f9e/compiler_opt/rl/compilation_runner.py#L446

for k, v in policy_result.items():
sequence_example = v[0]
policy_reward = v[1]
if k not in reward_stat:
raise ValueError(
(f'Example {k} does not exist under default policy for '
f'cmd line: {final_cmd_line}'))
default_reward = reward_stat[k].default_reward
moving_average_reward = reward_stat[k].moving_average_reward
sequence_example = _overwrite_trajectory_reward(
sequence_example=sequence_example,
reward=_calculate_reward(
policy=policy_reward, baseline=moving_average_reward))
sequence_example_list.append(sequence_example)
reward_stat[k].moving_average_reward = (
moving_average_reward * self._moving_average_decay_rate +
policy_reward * (1 - self._moving_average_decay_rate))
rewards.append(
_calculate_reward(policy=policy_reward, baseline=default_reward))
policy_rewards.append(policy_reward)
keys.append(k)

result = CompilationResult(
    sequence_examples=sequence_example_list,
    reward_stats=reward_stat,
    rewards=rewards,
    policy_rewards=policy_rewards,
    keys=keys,
    model_id=model_id)

for observer in self._observers:
  observer.observe(result)

return result

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions