|
| 1 | +// Copyright 2024 Google LLC |
| 2 | +// |
| 3 | +// Licensed under the Apache License, Version 2.0 (the "License"); |
| 4 | +// you may not use this file except in compliance with the License. |
| 5 | +// You may obtain a copy of the License at |
| 6 | +// |
| 7 | +// http://www.apache.org/licenses/LICENSE-2.0 |
| 8 | +// |
| 9 | +// Unless required by applicable law or agreed to in writing, software |
| 10 | +// distributed under the License is distributed on an "AS IS" BASIS, |
| 11 | +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 12 | +// See the License for the specific language governing permissions and |
| 13 | +// limitations under the License. |
| 14 | + |
| 15 | +#include "shell_encryption/rns/rns_relinearization_key.h" |
| 16 | + |
| 17 | +#include <memory> |
| 18 | +#include <string> |
| 19 | +#include <utility> |
| 20 | +#include <vector> |
| 21 | + |
| 22 | +#include "absl/log/check.h" |
| 23 | +#include "absl/numeric/int128.h" |
| 24 | +#include "absl/status/status.h" |
| 25 | +#include "absl/status/statusor.h" |
| 26 | +#include "absl/strings/str_cat.h" |
| 27 | +#include "absl/strings/string_view.h" |
| 28 | +#include "absl/types/span.h" |
| 29 | +#include "shell_encryption/integral_types.h" |
| 30 | +#include "shell_encryption/montgomery.h" |
| 31 | +#include "shell_encryption/prng/prng.h" |
| 32 | +#include "shell_encryption/prng/single_thread_chacha_prng.h" |
| 33 | +#include "shell_encryption/prng/single_thread_hkdf_prng.h" |
| 34 | +#include "shell_encryption/rns/error_distribution.h" |
| 35 | +#include "shell_encryption/rns/rns_ciphertext.h" |
| 36 | +#include "shell_encryption/rns/rns_gadget.h" |
| 37 | +#include "shell_encryption/rns/rns_modulus.h" |
| 38 | +#include "shell_encryption/rns/rns_polynomial.h" |
| 39 | +#include "shell_encryption/rns/rns_secret_key.h" |
| 40 | +#include "shell_encryption/status_macros.h" |
| 41 | + |
| 42 | +namespace rlwe { |
| 43 | + |
| 44 | +template <typename ModularInt> |
| 45 | +absl::StatusOr<RnsRelinKey<ModularInt>> RnsRelinKey<ModularInt>::Create( |
| 46 | + const RnsRlweSecretKey<ModularInt>& secret_key, int degree, int variance, |
| 47 | + const RnsGadget<ModularInt>* gadget, PrngType prng_type, |
| 48 | + Integer error_scalar) { |
| 49 | + if (degree <= 1) { |
| 50 | + return absl::InvalidArgumentError("`degree` must be at least 2."); |
| 51 | + } |
| 52 | + if (gadget == nullptr) { |
| 53 | + return absl::InvalidArgumentError("`gadget` must not be null."); |
| 54 | + } |
| 55 | + |
| 56 | + // Sample a PRNG seed for sampling the random polynomials in `key_as`. |
| 57 | + std::string prng_pad_seed; |
| 58 | + if (prng_type == PRNG_TYPE_HKDF) { |
| 59 | + RLWE_ASSIGN_OR_RETURN(prng_pad_seed, SingleThreadHkdfPrng::GenerateSeed()); |
| 60 | + } else if (prng_type == PRNG_TYPE_CHACHA) { |
| 61 | + RLWE_ASSIGN_OR_RETURN(prng_pad_seed, |
| 62 | + SingleThreadChaChaPrng::GenerateSeed()); |
| 63 | + } else { |
| 64 | + return absl::InvalidArgumentError("PrngType not specified correctly."); |
| 65 | + } |
| 66 | + |
| 67 | + // The relinearization key is a k*(l-1) x 2 matrix [[b2, a2], ..., [bl, al]], |
| 68 | + // where each block [bi, ai] consists of k RLWE encryptions of the target |
| 69 | + // secret g * s^i under the canonical secret key s(X). In the following, we |
| 70 | + // first sample the random polynomials ai's, and then generate bi's. |
| 71 | + RLWE_ASSIGN_OR_RETURN( |
| 72 | + std::vector<RnsPolynomial<ModularInt>> key_as, |
| 73 | + SampleRandomPad(gadget->Dimension(), degree, secret_key.LogN(), |
| 74 | + secret_key.Moduli(), prng_pad_seed, prng_type)); |
| 75 | + |
| 76 | + return CreateWithRandomPad(std::move(key_as), secret_key, degree, variance, |
| 77 | + gadget, prng_pad_seed, prng_type, error_scalar); |
| 78 | +} |
| 79 | + |
| 80 | +template <typename ModularInt> |
| 81 | +absl::StatusOr<std::vector<RnsPolynomial<ModularInt>>> |
| 82 | +RnsRelinKey<ModularInt>::SampleRandomPad( |
| 83 | + int dimension, int degree, int log_n, |
| 84 | + absl::Span<const PrimeModulus<ModularInt>* const> moduli, |
| 85 | + absl::string_view prng_seed, PrngType prng_type) { |
| 86 | + if (dimension <= 0) { |
| 87 | + return absl::InvalidArgumentError("`dimension` must be positive."); |
| 88 | + } |
| 89 | + if (degree <= 1) { |
| 90 | + return absl::InvalidArgumentError("`degree` must be at least 2."); |
| 91 | + } |
| 92 | + if (log_n <= 0) { |
| 93 | + return absl::InvalidArgumentError("`log_n` must be positive."); |
| 94 | + } |
| 95 | + // Create a PRNG for sampling the random polynomials in `key_as`. |
| 96 | + std::unique_ptr<SecurePrng> prng_pad; |
| 97 | + if (prng_type == PRNG_TYPE_HKDF) { |
| 98 | + RLWE_ASSIGN_OR_RETURN(prng_pad, SingleThreadHkdfPrng::Create(prng_seed)); |
| 99 | + } else if (prng_type == PRNG_TYPE_CHACHA) { |
| 100 | + RLWE_ASSIGN_OR_RETURN(prng_pad, SingleThreadChaChaPrng::Create(prng_seed)); |
| 101 | + } else { |
| 102 | + return absl::InvalidArgumentError("PrngType not specified correctly."); |
| 103 | + } |
| 104 | + |
| 105 | + std::vector<RnsPolynomial<ModularInt>> key_as; |
| 106 | + key_as.reserve(dimension * (degree - 1)); |
| 107 | + for (int i = 0; i < dimension * (degree - 1); ++i) { |
| 108 | + RLWE_ASSIGN_OR_RETURN(auto a, RnsPolynomial<ModularInt>::SampleUniform( |
| 109 | + log_n, prng_pad.get(), moduli)); |
| 110 | + key_as.push_back(std::move(a)); |
| 111 | + } |
| 112 | + return key_as; |
| 113 | +} |
| 114 | + |
| 115 | +template <typename ModularInt> |
| 116 | +absl::StatusOr<RnsRelinKey<ModularInt>> |
| 117 | +RnsRelinKey<ModularInt>::CreateWithRandomPad( |
| 118 | + std::vector<RnsPolynomial<ModularInt>> pads, |
| 119 | + const RnsRlweSecretKey<ModularInt>& secret_key, int degree, int variance, |
| 120 | + const RnsGadget<ModularInt>* gadget, absl::string_view prng_pad_seed, |
| 121 | + PrngType prng_type, Integer error_scalar) { |
| 122 | + if (variance <= 0) { |
| 123 | + return absl::InvalidArgumentError("`variance` must be positive."); |
| 124 | + } |
| 125 | + |
| 126 | + // Create the PRNGs for sampling the encryption randomness. |
| 127 | + std::unique_ptr<SecurePrng> prng_encryption; |
| 128 | + std::string prng_encryption_seed; |
| 129 | + if (prng_type == PRNG_TYPE_HKDF) { |
| 130 | + RLWE_ASSIGN_OR_RETURN(prng_encryption_seed, |
| 131 | + SingleThreadHkdfPrng::GenerateSeed()); |
| 132 | + RLWE_ASSIGN_OR_RETURN(prng_encryption, |
| 133 | + SingleThreadHkdfPrng::Create(prng_encryption_seed)); |
| 134 | + } else { |
| 135 | + RLWE_ASSIGN_OR_RETURN(prng_encryption_seed, |
| 136 | + SingleThreadChaChaPrng::GenerateSeed()); |
| 137 | + RLWE_ASSIGN_OR_RETURN(prng_encryption, |
| 138 | + SingleThreadChaChaPrng::Create(prng_encryption_seed)); |
| 139 | + } |
| 140 | + |
| 141 | + const RnsPolynomial<ModularInt>& target_key = secret_key.Key(); |
| 142 | + RnsPolynomial<ModularInt> secret = target_key; |
| 143 | + |
| 144 | + // The relinearization key is a k*(l-1) x 2 matrix [[b2, a2], ..., [bl, al]], |
| 145 | + // where ai consists of k uniformly random polynomials mod `moduli` and bi = |
| 146 | + // -ai * s + t * ei + gadget * s^i, for t = `error_scalar`. |
| 147 | + int log_n = secret_key.LogN(); |
| 148 | + int k = gadget->Dimension(); |
| 149 | + std::vector<RnsPolynomial<ModularInt>> key_bs; |
| 150 | + key_bs.reserve(k); |
| 151 | + int index = 0; // for polynomials in `pads`. |
| 152 | + auto moduli = secret_key.Moduli(); |
| 153 | + for (int i = 2; i <= degree; ++i) { |
| 154 | + RLWE_RETURN_IF_ERROR(secret.MulInPlace(target_key, moduli)); // s^i |
| 155 | + for (int j = 0; j < k; ++j) { |
| 156 | + // a = -u |
| 157 | + RLWE_ASSIGN_OR_RETURN(RnsPolynomial<ModularInt> u, |
| 158 | + pads[index++].Negate(moduli)); |
| 159 | + |
| 160 | + RnsPolynomial<ModularInt> z = secret; |
| 161 | + RLWE_RETURN_IF_ERROR(z.MulInPlace(gadget->Component(j), moduli)); |
| 162 | + |
| 163 | + RLWE_ASSIGN_OR_RETURN( |
| 164 | + RnsPolynomial<ModularInt> b, |
| 165 | + SampleError<ModularInt>(log_n, variance, moduli, |
| 166 | + prng_encryption.get())); // b = e |
| 167 | + RLWE_RETURN_IF_ERROR(b.MulInPlace(error_scalar, moduli)); // b = t * e |
| 168 | + RLWE_RETURN_IF_ERROR(b.AddInPlace(z, moduli)); // b = t * e + g[j] * s' |
| 169 | + RLWE_RETURN_IF_ERROR(b.FusedMulAddInPlace(u, target_key, moduli)); |
| 170 | + |
| 171 | + key_bs.push_back(std::move(b)); |
| 172 | + } |
| 173 | + } |
| 174 | + |
| 175 | + // Store the RNS moduli. |
| 176 | + std::vector<const PrimeModulus<ModularInt>*> moduli_vector; |
| 177 | + moduli_vector.insert(moduli_vector.begin(), moduli.begin(), moduli.end()); |
| 178 | + |
| 179 | + return RnsRelinKey(/*key_as=*/std::move(pads), std::move(key_bs), gadget, |
| 180 | + degree, std::move(moduli_vector), prng_pad_seed, |
| 181 | + prng_type); |
| 182 | +} |
| 183 | + |
| 184 | +template <typename ModularInt> |
| 185 | +absl::StatusOr<std::vector<RnsPolynomial<ModularInt>>> |
| 186 | +RnsRelinKey<ModularInt>::ApplyToRlweCiphertext( |
| 187 | + const RnsRlweCiphertext<ModularInt>& ciphertext) const { |
| 188 | + if (ciphertext.Degree() > degree_) { |
| 189 | + return absl::InvalidArgumentError( |
| 190 | + absl::StrCat("`ciphertext` degree is larger than degree of this " |
| 191 | + "relinearization key, ", |
| 192 | + degree_, ".")); |
| 193 | + } |
| 194 | + if (ciphertext.NumModuli() != moduli_.size()) { |
| 195 | + return absl::InvalidArgumentError( |
| 196 | + "`ciphertext` does not have a matching RNS moduli set."); |
| 197 | + } |
| 198 | + if (ciphertext.PowerOfS() != 1) { |
| 199 | + return absl::InvalidArgumentError( |
| 200 | + "Relinearization key can only apply to a ciphertext of power 1."); |
| 201 | + } |
| 202 | + |
| 203 | + // Apply the relinearization key with blocks [b2, a2], ..., [bl, al] to a |
| 204 | + // degree-l ciphertext (c0, ..., cl) to get a new ciphertext (c0', c1') = |
| 205 | + // (c0, c1) + sum(g^-1(ci) * [bi, ai], i = 2..l). |
| 206 | + int k = gadget_->Dimension(); |
| 207 | + int l = ciphertext.Degree(); |
| 208 | + RLWE_ASSIGN_OR_RETURN(RnsPolynomial<ModularInt> c0_new, |
| 209 | + ciphertext.Component(0)); |
| 210 | + RLWE_ASSIGN_OR_RETURN(RnsPolynomial<ModularInt> c1_new, |
| 211 | + ciphertext.Component(1)); |
| 212 | + for (int i = 2; i <= l; ++i) { |
| 213 | + RLWE_ASSIGN_OR_RETURN(RnsPolynomial<ModularInt> ci, |
| 214 | + ciphertext.Component(i)); |
| 215 | + if (ci.IsNttForm()) { |
| 216 | + RLWE_RETURN_IF_ERROR(ci.ConvertToCoeffForm(moduli_)); |
| 217 | + } |
| 218 | + RLWE_ASSIGN_OR_RETURN(std::vector<RnsPolynomial<ModularInt>> ci_digits, |
| 219 | + gadget_->Decompose(ci, moduli_)); |
| 220 | + for (int j = 0; j < k; ++j) { |
| 221 | + RLWE_RETURN_IF_ERROR(ci_digits[j].ConvertToNttForm(moduli_)); |
| 222 | + int index = (i - 2) * l + j; |
| 223 | + RLWE_RETURN_IF_ERROR( |
| 224 | + c0_new.FusedMulAddInPlace(ci_digits[j], key_bs_[index], moduli_)); |
| 225 | + RLWE_RETURN_IF_ERROR( |
| 226 | + c1_new.FusedMulAddInPlace(ci_digits[j], key_as_[index], moduli_)); |
| 227 | + } |
| 228 | + } |
| 229 | + |
| 230 | + return std::vector<RnsPolynomial<ModularInt>>{std::move(c0_new), |
| 231 | + std::move(c1_new)}; |
| 232 | +} |
| 233 | + |
| 234 | +template class RnsRelinKey<MontgomeryInt<Uint16>>; |
| 235 | +template class RnsRelinKey<MontgomeryInt<Uint32>>; |
| 236 | +template class RnsRelinKey<MontgomeryInt<Uint64>>; |
| 237 | +template class RnsRelinKey<MontgomeryInt<absl::uint128>>; |
| 238 | +#ifdef ABSL_HAVE_INTRINSIC_INT128 |
| 239 | +template class RnsRelinKey<MontgomeryInt<unsigned __int128>>; |
| 240 | +#endif |
| 241 | + |
| 242 | +} // namespace rlwe |
0 commit comments