You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: docs/dyn/aiplatform_v1.projects.locations.deploymentResourcePools.html
+5-5Lines changed: 5 additions & 5 deletions
Original file line number
Diff line number
Diff line change
@@ -127,7 +127,7 @@ <h3>Method Details</h3>
127
127
"dedicatedResources": { # A description of resources that are dedicated to a DeployedModel or DeployedIndex, and that need a higher degree of manual configuration. # Required. The underlying DedicatedResources that the DeploymentResourcePool uses.
128
128
"autoscalingMetricSpecs": [ # Immutable. The metric specifications that overrides a resource utilization metric (CPU utilization, accelerator's duty cycle, and so on) target value (default to 60 if not set). At most one entry is allowed per metric. If machine_spec.accelerator_count is above 0, the autoscaling will be based on both CPU utilization and accelerator's duty cycle metrics and scale up when either metrics exceeds its target value while scale down if both metrics are under their target value. The default target value is 60 for both metrics. If machine_spec.accelerator_count is 0, the autoscaling will be based on CPU utilization metric only with default target value 60 if not explicitly set. For example, in the case of Online Prediction, if you want to override target CPU utilization to 80, you should set autoscaling_metric_specs.metric_name to `aiplatform.googleapis.com/prediction/online/cpu/utilization` and autoscaling_metric_specs.target to `80`.
129
129
{ # The metric specification that defines the target resource utilization (CPU utilization, accelerator's duty cycle, and so on) for calculating the desired replica count.
130
-
"metricName": "A String", # Required. The resource metric name. Supported metrics: * For Online Prediction: * `aiplatform.googleapis.com/prediction/online/accelerator/duty_cycle` * `aiplatform.googleapis.com/prediction/online/cpu/utilization`
"target": 42, # The target resource utilization in percentage (1% - 100%) for the given metric; once the real usage deviates from the target by a certain percentage, the machine replicas change. The default value is 60 (representing 60%) if not provided.
132
132
},
133
133
],
@@ -244,7 +244,7 @@ <h3>Method Details</h3>
244
244
"dedicatedResources": { # A description of resources that are dedicated to a DeployedModel or DeployedIndex, and that need a higher degree of manual configuration. # Required. The underlying DedicatedResources that the DeploymentResourcePool uses.
245
245
"autoscalingMetricSpecs": [ # Immutable. The metric specifications that overrides a resource utilization metric (CPU utilization, accelerator's duty cycle, and so on) target value (default to 60 if not set). At most one entry is allowed per metric. If machine_spec.accelerator_count is above 0, the autoscaling will be based on both CPU utilization and accelerator's duty cycle metrics and scale up when either metrics exceeds its target value while scale down if both metrics are under their target value. The default target value is 60 for both metrics. If machine_spec.accelerator_count is 0, the autoscaling will be based on CPU utilization metric only with default target value 60 if not explicitly set. For example, in the case of Online Prediction, if you want to override target CPU utilization to 80, you should set autoscaling_metric_specs.metric_name to `aiplatform.googleapis.com/prediction/online/cpu/utilization` and autoscaling_metric_specs.target to `80`.
246
246
{ # The metric specification that defines the target resource utilization (CPU utilization, accelerator's duty cycle, and so on) for calculating the desired replica count.
247
-
"metricName": "A String", # Required. The resource metric name. Supported metrics: * For Online Prediction: * `aiplatform.googleapis.com/prediction/online/accelerator/duty_cycle` * `aiplatform.googleapis.com/prediction/online/cpu/utilization`
"target": 42, # The target resource utilization in percentage (1% - 100%) for the given metric; once the real usage deviates from the target by a certain percentage, the machine replicas change. The default value is 60 (representing 60%) if not provided.
249
249
},
250
250
],
@@ -300,7 +300,7 @@ <h3>Method Details</h3>
300
300
"dedicatedResources": { # A description of resources that are dedicated to a DeployedModel or DeployedIndex, and that need a higher degree of manual configuration. # Required. The underlying DedicatedResources that the DeploymentResourcePool uses.
301
301
"autoscalingMetricSpecs": [ # Immutable. The metric specifications that overrides a resource utilization metric (CPU utilization, accelerator's duty cycle, and so on) target value (default to 60 if not set). At most one entry is allowed per metric. If machine_spec.accelerator_count is above 0, the autoscaling will be based on both CPU utilization and accelerator's duty cycle metrics and scale up when either metrics exceeds its target value while scale down if both metrics are under their target value. The default target value is 60 for both metrics. If machine_spec.accelerator_count is 0, the autoscaling will be based on CPU utilization metric only with default target value 60 if not explicitly set. For example, in the case of Online Prediction, if you want to override target CPU utilization to 80, you should set autoscaling_metric_specs.metric_name to `aiplatform.googleapis.com/prediction/online/cpu/utilization` and autoscaling_metric_specs.target to `80`.
302
302
{ # The metric specification that defines the target resource utilization (CPU utilization, accelerator's duty cycle, and so on) for calculating the desired replica count.
303
-
"metricName": "A String", # Required. The resource metric name. Supported metrics: * For Online Prediction: * `aiplatform.googleapis.com/prediction/online/accelerator/duty_cycle` * `aiplatform.googleapis.com/prediction/online/cpu/utilization`
"target": 42, # The target resource utilization in percentage (1% - 100%) for the given metric; once the real usage deviates from the target by a certain percentage, the machine replicas change. The default value is 60 (representing 60%) if not provided.
305
305
},
306
306
],
@@ -364,7 +364,7 @@ <h3>Method Details</h3>
364
364
"dedicatedResources": { # A description of resources that are dedicated to a DeployedModel or DeployedIndex, and that need a higher degree of manual configuration. # Required. The underlying DedicatedResources that the DeploymentResourcePool uses.
365
365
"autoscalingMetricSpecs": [ # Immutable. The metric specifications that overrides a resource utilization metric (CPU utilization, accelerator's duty cycle, and so on) target value (default to 60 if not set). At most one entry is allowed per metric. If machine_spec.accelerator_count is above 0, the autoscaling will be based on both CPU utilization and accelerator's duty cycle metrics and scale up when either metrics exceeds its target value while scale down if both metrics are under their target value. The default target value is 60 for both metrics. If machine_spec.accelerator_count is 0, the autoscaling will be based on CPU utilization metric only with default target value 60 if not explicitly set. For example, in the case of Online Prediction, if you want to override target CPU utilization to 80, you should set autoscaling_metric_specs.metric_name to `aiplatform.googleapis.com/prediction/online/cpu/utilization` and autoscaling_metric_specs.target to `80`.
366
366
{ # The metric specification that defines the target resource utilization (CPU utilization, accelerator's duty cycle, and so on) for calculating the desired replica count.
367
-
"metricName": "A String", # Required. The resource metric name. Supported metrics: * For Online Prediction: * `aiplatform.googleapis.com/prediction/online/accelerator/duty_cycle` * `aiplatform.googleapis.com/prediction/online/cpu/utilization`
"target": 42, # The target resource utilization in percentage (1% - 100%) for the given metric; once the real usage deviates from the target by a certain percentage, the machine replicas change. The default value is 60 (representing 60%) if not provided.
369
369
},
370
370
],
@@ -461,7 +461,7 @@ <h3>Method Details</h3>
461
461
"dedicatedResources": { # A description of resources that are dedicated to a DeployedModel or DeployedIndex, and that need a higher degree of manual configuration. # A description of resources that are dedicated to the DeployedModel, and that need a higher degree of manual configuration.
462
462
"autoscalingMetricSpecs": [ # Immutable. The metric specifications that overrides a resource utilization metric (CPU utilization, accelerator's duty cycle, and so on) target value (default to 60 if not set). At most one entry is allowed per metric. If machine_spec.accelerator_count is above 0, the autoscaling will be based on both CPU utilization and accelerator's duty cycle metrics and scale up when either metrics exceeds its target value while scale down if both metrics are under their target value. The default target value is 60 for both metrics. If machine_spec.accelerator_count is 0, the autoscaling will be based on CPU utilization metric only with default target value 60 if not explicitly set. For example, in the case of Online Prediction, if you want to override target CPU utilization to 80, you should set autoscaling_metric_specs.metric_name to `aiplatform.googleapis.com/prediction/online/cpu/utilization` and autoscaling_metric_specs.target to `80`.
463
463
{ # The metric specification that defines the target resource utilization (CPU utilization, accelerator's duty cycle, and so on) for calculating the desired replica count.
464
-
"metricName": "A String", # Required. The resource metric name. Supported metrics: * For Online Prediction: * `aiplatform.googleapis.com/prediction/online/accelerator/duty_cycle` * `aiplatform.googleapis.com/prediction/online/cpu/utilization`
"target": 42, # The target resource utilization in percentage (1% - 100%) for the given metric; once the real usage deviates from the target by a certain percentage, the machine replicas change. The default value is 60 (representing 60%) if not provided.
0 commit comments