|
14 | 14 |
|
15 | 15 | from unittest import TestCase
|
16 | 16 |
|
17 |
| -import google.api_core.exceptions |
18 | 17 | import pandas
|
19 |
| -import pytest |
20 | 18 |
|
21 | 19 | import bigframes.ml.ensemble
|
22 | 20 |
|
@@ -116,11 +114,9 @@ def test_xgbregressor_model_predict(
|
116 | 114 |
|
117 | 115 |
|
118 | 116 | def test_to_gbq_saved_xgbregressor_model_scores(
|
119 |
| - penguins_xgbregressor_model, dataset_id, penguins_df_default_index |
| 117 | + penguins_xgbregressor_model, table_id_unique, penguins_df_default_index |
120 | 118 | ):
|
121 |
| - saved_model = penguins_xgbregressor_model.to_gbq( |
122 |
| - f"{dataset_id}.test_penguins_model", replace=True |
123 |
| - ) |
| 119 | + saved_model = penguins_xgbregressor_model.to_gbq(table_id_unique, replace=True) |
124 | 120 | df = penguins_df_default_index.dropna()
|
125 | 121 | X_test = df[
|
126 | 122 | [
|
@@ -155,14 +151,6 @@ def test_to_gbq_saved_xgbregressor_model_scores(
|
155 | 151 | )
|
156 | 152 |
|
157 | 153 |
|
158 |
| -def test_to_xgbregressor_model_gbq_replace(penguins_xgbregressor_model, dataset_id): |
159 |
| - penguins_xgbregressor_model.to_gbq( |
160 |
| - f"{dataset_id}.test_penguins_model", replace=True |
161 |
| - ) |
162 |
| - with pytest.raises(google.api_core.exceptions.Conflict): |
163 |
| - penguins_xgbregressor_model.to_gbq(f"{dataset_id}.test_penguins_model") |
164 |
| - |
165 |
| - |
166 | 154 | def test_xgbclassifier_model_score(
|
167 | 155 | penguins_xgbclassifier_model, penguins_df_default_index
|
168 | 156 | ):
|
@@ -240,11 +228,9 @@ def test_xgbclassifier_model_predict(
|
240 | 228 |
|
241 | 229 |
|
242 | 230 | def test_to_gbq_saved_xgbclassifier_model_scores(
|
243 |
| - penguins_xgbclassifier_model, dataset_id, penguins_df_default_index |
| 231 | + penguins_xgbclassifier_model, table_id_unique, penguins_df_default_index |
244 | 232 | ):
|
245 |
| - saved_model = penguins_xgbclassifier_model.to_gbq( |
246 |
| - f"{dataset_id}.test_penguins_model", replace=True |
247 |
| - ) |
| 233 | + saved_model = penguins_xgbclassifier_model.to_gbq(table_id_unique, replace=True) |
248 | 234 | df = penguins_df_default_index.dropna()
|
249 | 235 | X_test = df[
|
250 | 236 | [
|
@@ -281,14 +267,6 @@ def test_to_gbq_saved_xgbclassifier_model_scores(
|
281 | 267 | assert saved_model.max_iterations == 20
|
282 | 268 |
|
283 | 269 |
|
284 |
| -def test_to_xgbclassifier_model_gbq_replace(penguins_xgbclassifier_model, dataset_id): |
285 |
| - penguins_xgbclassifier_model.to_gbq( |
286 |
| - f"{dataset_id}.test_penguins_model", replace=True |
287 |
| - ) |
288 |
| - with pytest.raises(google.api_core.exceptions.Conflict): |
289 |
| - penguins_xgbclassifier_model.to_gbq(f"{dataset_id}.test_penguins_model") |
290 |
| - |
291 |
| - |
292 | 270 | def test_randomforestregressor_model_score(
|
293 | 271 | penguins_randomforest_regressor_model, penguins_df_default_index
|
294 | 272 | ):
|
@@ -387,10 +365,10 @@ def test_randomforestregressor_model_predict(
|
387 | 365 |
|
388 | 366 |
|
389 | 367 | def test_to_gbq_saved_randomforestregressor_model_scores(
|
390 |
| - penguins_randomforest_regressor_model, dataset_id, penguins_df_default_index |
| 368 | + penguins_randomforest_regressor_model, table_id_unique, penguins_df_default_index |
391 | 369 | ):
|
392 | 370 | saved_model = penguins_randomforest_regressor_model.to_gbq(
|
393 |
| - f"{dataset_id}.test_penguins_model", replace=True |
| 371 | + table_id_unique, replace=True |
394 | 372 | )
|
395 | 373 | df = penguins_df_default_index.dropna()
|
396 | 374 | X_test = df[
|
@@ -426,18 +404,6 @@ def test_to_gbq_saved_randomforestregressor_model_scores(
|
426 | 404 | )
|
427 | 405 |
|
428 | 406 |
|
429 |
| -def test_to_randomforestregressor_model_gbq_replace( |
430 |
| - penguins_randomforest_regressor_model, dataset_id |
431 |
| -): |
432 |
| - penguins_randomforest_regressor_model.to_gbq( |
433 |
| - f"{dataset_id}.test_penguins_model", replace=True |
434 |
| - ) |
435 |
| - with pytest.raises(google.api_core.exceptions.Conflict): |
436 |
| - penguins_randomforest_regressor_model.to_gbq( |
437 |
| - f"{dataset_id}.test_penguins_model" |
438 |
| - ) |
439 |
| - |
440 |
| - |
441 | 407 | def test_randomforestclassifier_model_score(
|
442 | 408 | penguins_randomforest_classifier_model, penguins_df_default_index
|
443 | 409 | ):
|
@@ -518,10 +484,10 @@ def test_randomforestclassifier_model_predict(
|
518 | 484 |
|
519 | 485 |
|
520 | 486 | def test_to_gbq_saved_randomforestclassifier_model_scores(
|
521 |
| - penguins_randomforest_classifier_model, dataset_id, penguins_df_default_index |
| 487 | + penguins_randomforest_classifier_model, table_id_unique, penguins_df_default_index |
522 | 488 | ):
|
523 | 489 | saved_model = penguins_randomforest_classifier_model.to_gbq(
|
524 |
| - f"{dataset_id}.test_penguins_model", replace=True |
| 490 | + table_id_unique, replace=True |
525 | 491 | )
|
526 | 492 | df = penguins_df_default_index.dropna()
|
527 | 493 | X_test = df[
|
@@ -555,15 +521,3 @@ def test_to_gbq_saved_randomforestclassifier_model_scores(
|
555 | 521 | # int64 Index by default in pandas versus Int64 (nullable) Index in BigQuery DataFrame
|
556 | 522 | check_index_type=False,
|
557 | 523 | )
|
558 |
| - |
559 |
| - |
560 |
| -def test_to_randomforestclassifier_model_gbq_replace( |
561 |
| - penguins_randomforest_classifier_model, dataset_id |
562 |
| -): |
563 |
| - penguins_randomforest_classifier_model.to_gbq( |
564 |
| - f"{dataset_id}.test_penguins_model", replace=True |
565 |
| - ) |
566 |
| - with pytest.raises(google.api_core.exceptions.Conflict): |
567 |
| - penguins_randomforest_classifier_model.to_gbq( |
568 |
| - f"{dataset_id}.test_penguins_model" |
569 |
| - ) |
0 commit comments