Skip to content

Commit 4d854fd

Browse files
Shuowei Lishuoweil
andauthored
docs: add example for logistic regression (#1240)
* add logistic regression example * makr test_llm_gemini_score as flask --------- Co-authored-by: Shuowei Li <[email protected]>
1 parent ed47ef1 commit 4d854fd

File tree

2 files changed

+32
-0
lines changed

2 files changed

+32
-0
lines changed

tests/system/small/ml/test_llm.py

Lines changed: 1 addition & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -417,6 +417,7 @@ def test_llm_palm_score_params(llm_fine_tune_df_default_index):
417417
)
418418

419419

420+
@pytest.mark.flaky(retries=2)
420421
@pytest.mark.parametrize(
421422
"model_name",
422423
(

third_party/bigframes_vendored/sklearn/linear_model/_logistic.py

Lines changed: 31 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -23,6 +23,37 @@
2323
class LogisticRegression(LinearClassifierMixin, BaseEstimator):
2424
"""Logistic Regression (aka logit, MaxEnt) classifier.
2525
26+
>>> from bigframes.ml.linear_model import LogisticRegression
27+
>>> import bigframes.pandas as bpd
28+
>>> bpd.options.display.progress_bar = None
29+
>>> X = bpd.DataFrame({ \
30+
"feature0": [20, 21, 19, 18], \
31+
"feature1": [0, 1, 1, 0], \
32+
"feature2": [0.2, 0.3, 0.4, 0.5]})
33+
>>> y = bpd.DataFrame({"outcome": [0, 0, 1, 1]})
34+
>>> # Create the LogisticRegression
35+
>>> model = LogisticRegression()
36+
>>> model.fit(X, y)
37+
LogisticRegression()
38+
>>> model.predict(X) # doctest:+SKIP
39+
predicted_outcome predicted_outcome_probs feature0 feature1 feature2
40+
0 0 [{'label': 1, 'prob': 3.1895929877221615e-07} ... 20 0 0.2
41+
1 0 [{'label': 1, 'prob': 5.662891265051953e-06} ... 21 1 0.3
42+
2 1 [{'label': 1, 'prob': 0.9999917826885262} {'l... 19 1 0.4
43+
3 1 [{'label': 1, 'prob': 0.9999999993659574} {'l... 18 0 0.5
44+
4 rows × 5 columns
45+
46+
[4 rows x 5 columns in total]
47+
48+
>>> # Score the model
49+
>>> score = model.score(X, y)
50+
>>> score # doctest:+SKIP
51+
precision recall accuracy f1_score log_loss roc_auc
52+
0 1.0 1.0 1.0 1.0 0.000004 1.0
53+
1 rows × 6 columns
54+
55+
[1 rows x 6 columns in total]
56+
2657
Args:
2758
optimize_strategy (str, default "auto_strategy"):
2859
The strategy to train logistic regression models. Possible values are

0 commit comments

Comments
 (0)