|
| 1 | +# Copyright 2023 Google LLC |
| 2 | +# |
| 3 | +# Licensed under the Apache License, Version 2.0 (the "License"); |
| 4 | +# you may not use this file except in compliance with the License. |
| 5 | +# You may obtain a copy of the License at |
| 6 | +# |
| 7 | +# http://www.apache.org/licenses/LICENSE-2.0 |
| 8 | +# |
| 9 | +# Unless required by applicable law or agreed to in writing, software |
| 10 | +# distributed under the License is distributed on an "AS IS" BASIS, |
| 11 | +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 12 | +# See the License for the specific language governing permissions and |
| 13 | +# limitations under the License. |
| 14 | + |
| 15 | +from __future__ import annotations |
| 16 | + |
| 17 | +import abc |
| 18 | +import collections |
| 19 | +import dataclasses |
| 20 | +import functools |
| 21 | +import itertools |
| 22 | +import typing |
| 23 | +from typing import Callable, Dict, Generator, Iterable, Mapping, Set, Tuple |
| 24 | + |
| 25 | +from bigframes.core import identifiers |
| 26 | +import bigframes.core.guid |
| 27 | +import bigframes.core.schema as schemata |
| 28 | +import bigframes.dtypes |
| 29 | + |
| 30 | +if typing.TYPE_CHECKING: |
| 31 | + import bigframes.session |
| 32 | + |
| 33 | +COLUMN_SET = frozenset[identifiers.ColumnId] |
| 34 | + |
| 35 | + |
| 36 | +@dataclasses.dataclass(frozen=True) |
| 37 | +class Field: |
| 38 | + id: identifiers.ColumnId |
| 39 | + dtype: bigframes.dtypes.Dtype |
| 40 | + |
| 41 | + |
| 42 | +@dataclasses.dataclass(eq=False, frozen=True) |
| 43 | +class BigFrameNode: |
| 44 | + """ |
| 45 | + Immutable node for representing 2D typed array as a tree of operators. |
| 46 | +
|
| 47 | + All subclasses must be hashable so as to be usable as caching key. |
| 48 | + """ |
| 49 | + |
| 50 | + @property |
| 51 | + def deterministic(self) -> bool: |
| 52 | + """Whether this node will evaluates deterministically.""" |
| 53 | + return True |
| 54 | + |
| 55 | + @property |
| 56 | + def row_preserving(self) -> bool: |
| 57 | + """Whether this node preserves input rows.""" |
| 58 | + return True |
| 59 | + |
| 60 | + @property |
| 61 | + def non_local(self) -> bool: |
| 62 | + """ |
| 63 | + Whether this node combines information across multiple rows instead of processing rows independently. |
| 64 | + Used as an approximation for whether the expression may require shuffling to execute (and therefore be expensive). |
| 65 | + """ |
| 66 | + return False |
| 67 | + |
| 68 | + @property |
| 69 | + def child_nodes(self) -> typing.Sequence[BigFrameNode]: |
| 70 | + """Direct children of this node""" |
| 71 | + return tuple([]) |
| 72 | + |
| 73 | + @property |
| 74 | + @abc.abstractmethod |
| 75 | + def row_count(self) -> typing.Optional[int]: |
| 76 | + return None |
| 77 | + |
| 78 | + @abc.abstractmethod |
| 79 | + def remap_refs( |
| 80 | + self, mappings: Mapping[identifiers.ColumnId, identifiers.ColumnId] |
| 81 | + ) -> BigFrameNode: |
| 82 | + """Remap variable references""" |
| 83 | + ... |
| 84 | + |
| 85 | + @property |
| 86 | + @abc.abstractmethod |
| 87 | + def node_defined_ids(self) -> Tuple[identifiers.ColumnId, ...]: |
| 88 | + """The variables defined in this node (as opposed to by child nodes).""" |
| 89 | + ... |
| 90 | + |
| 91 | + @functools.cached_property |
| 92 | + def session(self): |
| 93 | + sessions = [] |
| 94 | + for child in self.child_nodes: |
| 95 | + if child.session is not None: |
| 96 | + sessions.append(child.session) |
| 97 | + unique_sessions = len(set(sessions)) |
| 98 | + if unique_sessions > 1: |
| 99 | + raise ValueError("Cannot use combine sources from multiple sessions.") |
| 100 | + elif unique_sessions == 1: |
| 101 | + return sessions[0] |
| 102 | + return None |
| 103 | + |
| 104 | + def _validate(self): |
| 105 | + """Validate the local data in the node.""" |
| 106 | + return |
| 107 | + |
| 108 | + @functools.cache |
| 109 | + def validate_tree(self) -> bool: |
| 110 | + for child in self.child_nodes: |
| 111 | + child.validate_tree() |
| 112 | + self._validate() |
| 113 | + field_list = list(self.fields) |
| 114 | + if len(set(field_list)) != len(field_list): |
| 115 | + raise ValueError(f"Non unique field ids {list(self.fields)}") |
| 116 | + return True |
| 117 | + |
| 118 | + def _as_tuple(self) -> Tuple: |
| 119 | + """Get all fields as tuple.""" |
| 120 | + return tuple(getattr(self, field.name) for field in dataclasses.fields(self)) |
| 121 | + |
| 122 | + def __hash__(self) -> int: |
| 123 | + # Custom hash that uses cache to avoid costly recomputation |
| 124 | + return self._cached_hash |
| 125 | + |
| 126 | + def __eq__(self, other) -> bool: |
| 127 | + # Custom eq that tries to short-circuit full structural comparison |
| 128 | + if not isinstance(other, self.__class__): |
| 129 | + return False |
| 130 | + if self is other: |
| 131 | + return True |
| 132 | + if hash(self) != hash(other): |
| 133 | + return False |
| 134 | + return self._as_tuple() == other._as_tuple() |
| 135 | + |
| 136 | + # BigFrameNode trees can be very deep so its important avoid recalculating the hash from scratch |
| 137 | + # Each subclass of BigFrameNode should use this property to implement __hash__ |
| 138 | + # The default dataclass-generated __hash__ method is not cached |
| 139 | + @functools.cached_property |
| 140 | + def _cached_hash(self): |
| 141 | + return hash(self._as_tuple()) |
| 142 | + |
| 143 | + @property |
| 144 | + def roots(self) -> typing.Set[BigFrameNode]: |
| 145 | + roots = itertools.chain.from_iterable( |
| 146 | + map(lambda child: child.roots, self.child_nodes) |
| 147 | + ) |
| 148 | + return set(roots) |
| 149 | + |
| 150 | + # TODO: Store some local data lazily for select, aggregate nodes. |
| 151 | + @property |
| 152 | + @abc.abstractmethod |
| 153 | + def fields(self) -> Iterable[Field]: |
| 154 | + ... |
| 155 | + |
| 156 | + @property |
| 157 | + def ids(self) -> Iterable[identifiers.ColumnId]: |
| 158 | + """All output ids from the node.""" |
| 159 | + return (field.id for field in self.fields) |
| 160 | + |
| 161 | + @property |
| 162 | + @abc.abstractmethod |
| 163 | + def variables_introduced(self) -> int: |
| 164 | + """ |
| 165 | + Defines number of values created by the current node. Helps represent the "width" of a query |
| 166 | + """ |
| 167 | + ... |
| 168 | + |
| 169 | + @property |
| 170 | + def relation_ops_created(self) -> int: |
| 171 | + """ |
| 172 | + Defines the number of relational ops generated by the current node. Used to estimate query planning complexity. |
| 173 | + """ |
| 174 | + return 1 |
| 175 | + |
| 176 | + @property |
| 177 | + def joins(self) -> bool: |
| 178 | + """ |
| 179 | + Defines whether the node joins data. |
| 180 | + """ |
| 181 | + return False |
| 182 | + |
| 183 | + @property |
| 184 | + @abc.abstractmethod |
| 185 | + def order_ambiguous(self) -> bool: |
| 186 | + """ |
| 187 | + Whether row ordering is potentially ambiguous. For example, ReadTable (without a primary key) could be ordered in different ways. |
| 188 | + """ |
| 189 | + ... |
| 190 | + |
| 191 | + @property |
| 192 | + @abc.abstractmethod |
| 193 | + def explicitly_ordered(self) -> bool: |
| 194 | + """ |
| 195 | + Whether row ordering is potentially ambiguous. For example, ReadTable (without a primary key) could be ordered in different ways. |
| 196 | + """ |
| 197 | + ... |
| 198 | + |
| 199 | + @functools.cached_property |
| 200 | + def height(self) -> int: |
| 201 | + if len(self.child_nodes) == 0: |
| 202 | + return 0 |
| 203 | + return max(child.height for child in self.child_nodes) + 1 |
| 204 | + |
| 205 | + @functools.cached_property |
| 206 | + def total_variables(self) -> int: |
| 207 | + return self.variables_introduced + sum( |
| 208 | + map(lambda x: x.total_variables, self.child_nodes) |
| 209 | + ) |
| 210 | + |
| 211 | + @functools.cached_property |
| 212 | + def total_relational_ops(self) -> int: |
| 213 | + return self.relation_ops_created + sum( |
| 214 | + map(lambda x: x.total_relational_ops, self.child_nodes) |
| 215 | + ) |
| 216 | + |
| 217 | + @functools.cached_property |
| 218 | + def total_joins(self) -> int: |
| 219 | + return int(self.joins) + sum(map(lambda x: x.total_joins, self.child_nodes)) |
| 220 | + |
| 221 | + @functools.cached_property |
| 222 | + def schema(self) -> schemata.ArraySchema: |
| 223 | + # TODO: Make schema just a view on fields |
| 224 | + return schemata.ArraySchema( |
| 225 | + tuple(schemata.SchemaItem(i.id.name, i.dtype) for i in self.fields) |
| 226 | + ) |
| 227 | + |
| 228 | + @property |
| 229 | + def planning_complexity(self) -> int: |
| 230 | + """ |
| 231 | + Empirical heuristic measure of planning complexity. |
| 232 | +
|
| 233 | + Used to determine when to decompose overly complex computations. May require tuning. |
| 234 | + """ |
| 235 | + return self.total_variables * self.total_relational_ops * (1 + self.total_joins) |
| 236 | + |
| 237 | + @abc.abstractmethod |
| 238 | + def transform_children( |
| 239 | + self, t: Callable[[BigFrameNode], BigFrameNode] |
| 240 | + ) -> BigFrameNode: |
| 241 | + """Apply a function to each child node.""" |
| 242 | + ... |
| 243 | + |
| 244 | + @abc.abstractmethod |
| 245 | + def remap_vars( |
| 246 | + self, mappings: Mapping[identifiers.ColumnId, identifiers.ColumnId] |
| 247 | + ) -> BigFrameNode: |
| 248 | + """Remap defined (in this node only) variables.""" |
| 249 | + ... |
| 250 | + |
| 251 | + @property |
| 252 | + def defines_namespace(self) -> bool: |
| 253 | + """ |
| 254 | + If true, this node establishes a new column id namespace. |
| 255 | +
|
| 256 | + If false, this node consumes and produces ids in the namespace |
| 257 | + """ |
| 258 | + return False |
| 259 | + |
| 260 | + @property |
| 261 | + def referenced_ids(self) -> COLUMN_SET: |
| 262 | + return frozenset() |
| 263 | + |
| 264 | + @functools.cached_property |
| 265 | + def defined_variables(self) -> set[str]: |
| 266 | + """Full set of variables defined in the namespace, even if not selected.""" |
| 267 | + self_defined_variables = set(self.schema.names) |
| 268 | + if self.defines_namespace: |
| 269 | + return self_defined_variables |
| 270 | + return self_defined_variables.union( |
| 271 | + *(child.defined_variables for child in self.child_nodes) |
| 272 | + ) |
| 273 | + |
| 274 | + def get_type(self, id: identifiers.ColumnId) -> bigframes.dtypes.Dtype: |
| 275 | + return self._dtype_lookup[id] |
| 276 | + |
| 277 | + @functools.cached_property |
| 278 | + def _dtype_lookup(self): |
| 279 | + return {field.id: field.dtype for field in self.fields} |
| 280 | + |
| 281 | + # Plan algorithms |
| 282 | + def unique_nodes( |
| 283 | + self: BigFrameNode, |
| 284 | + ) -> Generator[BigFrameNode, None, None]: |
| 285 | + """Walks the tree for unique nodes""" |
| 286 | + seen = set() |
| 287 | + stack: list[BigFrameNode] = [self] |
| 288 | + while stack: |
| 289 | + item = stack.pop() |
| 290 | + if item not in seen: |
| 291 | + yield item |
| 292 | + seen.add(item) |
| 293 | + stack.extend(item.child_nodes) |
| 294 | + |
| 295 | + def edges( |
| 296 | + self: BigFrameNode, |
| 297 | + ) -> Generator[Tuple[BigFrameNode, BigFrameNode], None, None]: |
| 298 | + for item in self.unique_nodes(): |
| 299 | + for child in item.child_nodes: |
| 300 | + yield (item, child) |
| 301 | + |
| 302 | + def iter_nodes_topo(self: BigFrameNode) -> Generator[BigFrameNode, None, None]: |
| 303 | + """Returns nodes from bottom up.""" |
| 304 | + queue = collections.deque( |
| 305 | + [node for node in self.unique_nodes() if not node.child_nodes] |
| 306 | + ) |
| 307 | + |
| 308 | + child_to_parents: Dict[ |
| 309 | + BigFrameNode, Set[BigFrameNode] |
| 310 | + ] = collections.defaultdict(set) |
| 311 | + for parent, child in self.edges(): |
| 312 | + child_to_parents[child].add(parent) |
| 313 | + |
| 314 | + yielded = set() |
| 315 | + |
| 316 | + while queue: |
| 317 | + item = queue.popleft() |
| 318 | + yield item |
| 319 | + yielded.add(item) |
| 320 | + for parent in child_to_parents[item]: |
| 321 | + if set(parent.child_nodes).issubset(yielded): |
| 322 | + queue.append(parent) |
| 323 | + |
| 324 | + def top_down( |
| 325 | + self: BigFrameNode, |
| 326 | + transform: Callable[[BigFrameNode], BigFrameNode], |
| 327 | + ) -> BigFrameNode: |
| 328 | + """ |
| 329 | + Perform a top-down transformation of the BigFrameNode tree. |
| 330 | + """ |
| 331 | + to_process = [self] |
| 332 | + results: Dict[BigFrameNode, BigFrameNode] = {} |
| 333 | + |
| 334 | + while to_process: |
| 335 | + item = to_process.pop() |
| 336 | + if item not in results.keys(): |
| 337 | + item_result = transform(item) |
| 338 | + results[item] = item_result |
| 339 | + to_process.extend(item_result.child_nodes) |
| 340 | + |
| 341 | + to_process = [self] |
| 342 | + # for each processed item, replace its children |
| 343 | + for item in reversed(list(results.keys())): |
| 344 | + results[item] = results[item].transform_children(lambda x: results[x]) |
| 345 | + |
| 346 | + return results[self] |
| 347 | + |
| 348 | + def bottom_up( |
| 349 | + self: BigFrameNode, |
| 350 | + transform: Callable[[BigFrameNode], BigFrameNode], |
| 351 | + ) -> BigFrameNode: |
| 352 | + """ |
| 353 | + Perform a bottom-up transformation of the BigFrameNode tree. |
| 354 | +
|
| 355 | + The `transform` function is applied to each node *after* its children |
| 356 | + have been transformed. This allows for transformations that depend |
| 357 | + on the results of transforming subtrees. |
| 358 | +
|
| 359 | + Returns the transformed root node. |
| 360 | + """ |
| 361 | + results: dict[BigFrameNode, BigFrameNode] = {} |
| 362 | + for node in list(self.iter_nodes_topo()): |
| 363 | + # child nodes have already been transformed |
| 364 | + result = node.transform_children(lambda x: results[x]) |
| 365 | + result = transform(result) |
| 366 | + results[node] = result |
| 367 | + |
| 368 | + return results[self] |
0 commit comments