@@ -193,7 +193,7 @@ def agg(
193
193
194
194
# Run model
195
195
predict_df = typing .cast (
196
- bigframes .dataframe .DataFrame , model .predict (prompt_s )
196
+ bigframes .dataframe .DataFrame , model .predict (prompt_s , temperature = 0.0 )
197
197
)
198
198
agg_df [column ] = predict_df ["ml_generate_text_llm_result" ].combine_first (
199
199
single_row_df
@@ -344,7 +344,8 @@ def filter(self, instruction: str, model):
344
344
results = typing .cast (
345
345
DataFrame ,
346
346
model .predict (
347
- self ._make_prompt (columns , user_instruction , output_instruction )
347
+ self ._make_prompt (columns , user_instruction , output_instruction ),
348
+ temperature = 0.0 ,
348
349
),
349
350
)
350
351
@@ -418,7 +419,8 @@ def map(self, instruction: str, output_column: str, model):
418
419
results = typing .cast (
419
420
Series ,
420
421
model .predict (
421
- self ._make_prompt (columns , user_instruction , output_instruction )
422
+ self ._make_prompt (columns , user_instruction , output_instruction ),
423
+ temperature = 0.0 ,
422
424
)["ml_generate_text_llm_result" ],
423
425
)
424
426
@@ -776,7 +778,9 @@ def _topk_partition(
776
778
777
779
import bigframes .dataframe
778
780
779
- predict_df = typing .cast (bigframes .dataframe .DataFrame , model .predict (prompt_s ))
781
+ predict_df = typing .cast (
782
+ bigframes .dataframe .DataFrame , model .predict (prompt_s , temperature = 0.0 )
783
+ )
780
784
781
785
marks = predict_df ["ml_generate_text_llm_result" ].str .contains ("2" )
782
786
more_relavant : bigframes .dataframe .DataFrame = df [marks ]
0 commit comments