|
| 1 | +# Copyright 2024 Google LLC |
| 2 | +# |
| 3 | +# Licensed under the Apache License, Version 2.0 (the "License"); |
| 4 | +# you may not use this file except in compliance with the License. |
| 5 | +# You may obtain a copy of the License at |
| 6 | +# |
| 7 | +# http://www.apache.org/licenses/LICENSE-2.0 |
| 8 | +# |
| 9 | +# Unless required by applicable law or agreed to in writing, software |
| 10 | +# distributed under the License is distributed on an "AS IS" BASIS, |
| 11 | +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 12 | +# See the License for the specific language governing permissions and |
| 13 | +# limitations under the License. |
| 14 | + |
| 15 | +import datetime |
| 16 | + |
| 17 | +import pandas as pd |
| 18 | +import pyarrow as pa |
| 19 | +import pytest |
| 20 | + |
| 21 | +import bigframes as bf |
| 22 | +from bigframes.display.html import _flatten_nested_data |
| 23 | +import bigframes.display.html as bf_html |
| 24 | + |
| 25 | + |
| 26 | +@pytest.mark.parametrize( |
| 27 | + ("data", "expected_alignments", "expected_strings"), |
| 28 | + [ |
| 29 | + pytest.param( |
| 30 | + { |
| 31 | + "string_col": ["a", "b", "c"], |
| 32 | + "int_col": [1, 2, 3], |
| 33 | + "float_col": [1.1, 2.2, 3.3], |
| 34 | + "bool_col": [True, False, True], |
| 35 | + }, |
| 36 | + { |
| 37 | + "string_col": "left", |
| 38 | + "int_col": "right", |
| 39 | + "float_col": "right", |
| 40 | + "bool_col": "left", |
| 41 | + }, |
| 42 | + ["1.100000", "2.200000", "3.300000"], |
| 43 | + id="scalars", |
| 44 | + ), |
| 45 | + pytest.param( |
| 46 | + { |
| 47 | + "timestamp_col": pa.array( |
| 48 | + [ |
| 49 | + datetime.datetime.fromisoformat(value) |
| 50 | + for value in [ |
| 51 | + "2024-01-01 00:00:00", |
| 52 | + "2024-01-01 00:00:01", |
| 53 | + "2024-01-01 00:00:02", |
| 54 | + ] |
| 55 | + ], |
| 56 | + pa.timestamp("us", tz="UTC"), |
| 57 | + ), |
| 58 | + "datetime_col": pa.array( |
| 59 | + [ |
| 60 | + datetime.datetime.fromisoformat(value) |
| 61 | + for value in [ |
| 62 | + "2027-06-05 04:03:02.001", |
| 63 | + "2027-01-01 00:00:01", |
| 64 | + "2027-01-01 00:00:02", |
| 65 | + ] |
| 66 | + ], |
| 67 | + pa.timestamp("us"), |
| 68 | + ), |
| 69 | + "date_col": pa.array( |
| 70 | + [ |
| 71 | + datetime.date(1999, 1, 1), |
| 72 | + datetime.date(1999, 1, 2), |
| 73 | + datetime.date(1999, 1, 3), |
| 74 | + ], |
| 75 | + pa.date32(), |
| 76 | + ), |
| 77 | + "time_col": pa.array( |
| 78 | + [ |
| 79 | + datetime.time(11, 11, 0), |
| 80 | + datetime.time(11, 11, 1), |
| 81 | + datetime.time(11, 11, 2), |
| 82 | + ], |
| 83 | + pa.time64("us"), |
| 84 | + ), |
| 85 | + }, |
| 86 | + { |
| 87 | + "timestamp_col": "left", |
| 88 | + "datetime_col": "left", |
| 89 | + "date_col": "left", |
| 90 | + "time_col": "left", |
| 91 | + }, |
| 92 | + [ |
| 93 | + "2024-01-01 00:00:00", |
| 94 | + "2027-06-05 04:03:02.001", |
| 95 | + "1999-01-01", |
| 96 | + "11:11:01", |
| 97 | + ], |
| 98 | + id="datetimes", |
| 99 | + ), |
| 100 | + pytest.param( |
| 101 | + { |
| 102 | + "array_col": pd.Series( |
| 103 | + [[1, 2, 3], [4, 5, 6], [7, 8, 9]], |
| 104 | + dtype=pd.ArrowDtype(pa.list_(pa.int64())), |
| 105 | + ), |
| 106 | + }, |
| 107 | + { |
| 108 | + "array_col": "left", |
| 109 | + }, |
| 110 | + ["[1, 2, 3]", "[4, 5, 6]", "[7, 8, 9]"], |
| 111 | + id="array", |
| 112 | + ), |
| 113 | + pytest.param( |
| 114 | + { |
| 115 | + "struct_col": pd.Series( |
| 116 | + [{"v": 1}, {"v": 2}, {"v": 3}], |
| 117 | + dtype=pd.ArrowDtype(pa.struct([("v", pa.int64())])), |
| 118 | + ), |
| 119 | + }, |
| 120 | + { |
| 121 | + "struct_col": "left", |
| 122 | + }, |
| 123 | + ["{'v': 1}", "{'v': 2}", "{'v': 3}"], |
| 124 | + id="struct", |
| 125 | + ), |
| 126 | + ], |
| 127 | +) |
| 128 | +def test_render_html_alignment_and_precision( |
| 129 | + data, expected_alignments, expected_strings |
| 130 | +): |
| 131 | + df = pd.DataFrame(data) |
| 132 | + html = bf_html.render_html(dataframe=df, table_id="test-table") |
| 133 | + |
| 134 | + for _, align in expected_alignments.items(): |
| 135 | + assert 'th style="text-align: left;"' in html |
| 136 | + assert f'<td style="text-align: {align};' in html |
| 137 | + |
| 138 | + for expected_string in expected_strings: |
| 139 | + assert expected_string in html |
| 140 | + |
| 141 | + |
| 142 | +def test_render_html_precision(): |
| 143 | + data = {"float_col": [3.14159265]} |
| 144 | + df = pd.DataFrame(data) |
| 145 | + |
| 146 | + with bf.option_context("display.precision", 4): |
| 147 | + html = bf_html.render_html(dataframe=df, table_id="test-table") |
| 148 | + assert "3.1416" in html |
| 149 | + |
| 150 | + # Make sure we reset to default |
| 151 | + html = bf_html.render_html(dataframe=df, table_id="test-table") |
| 152 | + assert "3.141593" in html |
| 153 | + |
| 154 | + |
| 155 | +def test_flatten_nested_data(): |
| 156 | + # Test STRUCT flattening |
| 157 | + struct_data = pd.DataFrame( |
| 158 | + { |
| 159 | + "id": [1, 2], |
| 160 | + "struct_col": pd.Series( |
| 161 | + [{"name": "Alice", "age": 30}, {"name": "Bob", "age": 25}], |
| 162 | + dtype=pd.ArrowDtype( |
| 163 | + pa.struct([("name", pa.string()), ("age", pa.int64())]) |
| 164 | + ), |
| 165 | + ), |
| 166 | + } |
| 167 | + ) |
| 168 | + |
| 169 | + flattened, _, _ = _flatten_nested_data(struct_data) |
| 170 | + assert "struct_col.name" in flattened.columns |
| 171 | + assert "struct_col.age" in flattened.columns |
| 172 | + assert flattened["struct_col.name"].tolist() == ["Alice", "Bob"] |
| 173 | + |
| 174 | + |
| 175 | +def test_array_explode(): |
| 176 | + # Test ARRAY explosion |
| 177 | + array_data = pd.DataFrame( |
| 178 | + { |
| 179 | + "id": [1, 2], |
| 180 | + "array_col": pd.Series( |
| 181 | + [[10, 20, 30], [40, 50]], dtype=pd.ArrowDtype(pa.list_(pa.int64())) |
| 182 | + ), |
| 183 | + } |
| 184 | + ) |
| 185 | + |
| 186 | + flattened, groups, _ = _flatten_nested_data(array_data) |
| 187 | + assert len(flattened) == 6 # 3 + 2 array elements, padded to 3*2 |
| 188 | + assert "0" in groups # First original row |
| 189 | + assert len(groups["0"]) == 3 # Three array elements |
| 190 | + assert "1" in groups |
| 191 | + assert len(groups["1"]) == 3 |
0 commit comments