@@ -57,7 +57,7 @@ def agg(
5757 >>> bpd.options.compute.semantic_ops_confirmation_threshold = 25
5858
5959 >>> import bigframes.ml.llm as llm
60- >>> model = llm.GeminiTextGenerator(model_name="gemini-1.5 -flash-001")
60+ >>> model = llm.GeminiTextGenerator(model_name="gemini-2.0 -flash-001")
6161
6262 >>> df = bpd.DataFrame(
6363 ... {
@@ -326,7 +326,7 @@ def filter(self, instruction: str, model, ground_with_google_search: bool = Fals
326326 >>> bpd.options.compute.semantic_ops_confirmation_threshold = 25
327327
328328 >>> import bigframes.ml.llm as llm
329- >>> model = llm.GeminiTextGenerator(model_name="gemini-1.5 -flash-001")
329+ >>> model = llm.GeminiTextGenerator(model_name="gemini-2.0 -flash-001")
330330
331331 >>> df = bpd.DataFrame({"country": ["USA", "Germany"], "city": ["Seattle", "Berlin"]})
332332 >>> df.semantics.filter("{city} is the capital of {country}", model)
@@ -440,7 +440,7 @@ def map(
440440 >>> bpd.options.compute.semantic_ops_confirmation_threshold = 25
441441
442442 >>> import bigframes.ml.llm as llm
443- >>> model = llm.GeminiTextGenerator(model_name="gemini-1.5 -flash-001")
443+ >>> model = llm.GeminiTextGenerator(model_name="gemini-2.0 -flash-001")
444444
445445 >>> df = bpd.DataFrame({"ingredient_1": ["Burger Bun", "Soy Bean"], "ingredient_2": ["Beef Patty", "Bittern"]})
446446 >>> df.semantics.map("What is the food made from {ingredient_1} and {ingredient_2}? One word only.", output_column="food", model=model)
@@ -563,7 +563,7 @@ def join(
563563 >>> bpd.options.compute.semantic_ops_confirmation_threshold = 25
564564
565565 >>> import bigframes.ml.llm as llm
566- >>> model = llm.GeminiTextGenerator(model_name="gemini-1.5 -flash-001")
566+ >>> model = llm.GeminiTextGenerator(model_name="gemini-2.0 -flash-001")
567567
568568 >>> cities = bpd.DataFrame({'city': ['Seattle', 'Ottawa', 'Berlin', 'Shanghai', 'New Delhi']})
569569 >>> continents = bpd.DataFrame({'continent': ['North America', 'Africa', 'Asia']})
@@ -805,7 +805,7 @@ def top_k(
805805 >>> bpd.options.compute.semantic_ops_confirmation_threshold = 25
806806
807807 >>> import bigframes.ml.llm as llm
808- >>> model = llm.GeminiTextGenerator(model_name="gemini-1.5 -flash-001")
808+ >>> model = llm.GeminiTextGenerator(model_name="gemini-2.0 -flash-001")
809809
810810 >>> df = bpd.DataFrame(
811811 ... {
0 commit comments