@@ -3324,6 +3324,58 @@ def nlargest(self, n: int, columns, keep: str = "first"):
33243324 ``df.sort_values(columns, ascending=False).head(n)``, but more
33253325 performant.
33263326
3327+ **Examples:**
3328+
3329+ >>> import bigframes.pandas as bpd
3330+ >>> bpd.options.display.progress_bar = None
3331+
3332+ >>> df = bpd.DataFrame({"A": [1, 1, 3, 3, 5, 5],
3333+ ... "B": [5, 6, 3, 4, 1, 2],
3334+ ... "C": ['a', 'b', 'a', 'b', 'a', 'b']})
3335+ >>> df
3336+ A B C
3337+ 0 1 5 a
3338+ 1 1 6 b
3339+ 2 3 3 a
3340+ 3 3 4 b
3341+ 4 5 1 a
3342+ 5 5 2 b
3343+ <BLANKLINE>
3344+ [6 rows x 3 columns]
3345+
3346+ Returns rows with the largest value in 'A', including all ties:
3347+
3348+ >>> df.nlargest(1, 'A', keep = "all")
3349+ A B C
3350+ 4 5 1 a
3351+ 5 5 2 b
3352+ <BLANKLINE>
3353+ [2 rows x 3 columns]
3354+
3355+ Returns the first row with the largest value in 'A', default behavior in case of ties:
3356+
3357+ >>> df.nlargest(1, 'A')
3358+ A B C
3359+ 4 5 1 a
3360+ <BLANKLINE>
3361+ [1 rows x 3 columns]
3362+
3363+ Returns the last row with the largest value in 'A' in case of ties:
3364+
3365+ >>> df.nlargest(1, 'A', keep = "last")
3366+ A B C
3367+ 5 5 2 b
3368+ <BLANKLINE>
3369+ [1 rows x 3 columns]
3370+
3371+ Returns the row with the largest combined values in both 'A' and 'C':
3372+
3373+ >>> df.nlargest(1, ['A', 'C'])
3374+ A B C
3375+ 5 5 2 b
3376+ <BLANKLINE>
3377+ [1 rows x 3 columns]
3378+
33273379 Args:
33283380 n (int):
33293381 Number of rows to return.
@@ -3359,6 +3411,59 @@ def nsmallest(self, n: int, columns, keep: str = "first"):
33593411 ``df.sort_values(columns, ascending=True).head(n)``, but more
33603412 performant.
33613413
3414+ **Examples:**
3415+
3416+ >>> import bigframes.pandas as bpd
3417+ >>> bpd.options.display.progress_bar = None
3418+
3419+ >>> df = bpd.DataFrame({"A": [1, 1, 3, 3, 5, 5],
3420+ ... "B": [5, 6, 3, 4, 1, 2],
3421+ ... "C": ['a', 'b', 'a', 'b', 'a', 'b']})
3422+ >>> df
3423+ A B C
3424+ 0 1 5 a
3425+ 1 1 6 b
3426+ 2 3 3 a
3427+ 3 3 4 b
3428+ 4 5 1 a
3429+ 5 5 2 b
3430+ <BLANKLINE>
3431+ [6 rows x 3 columns]
3432+
3433+ Returns rows with the smallest value in 'A', including all ties:
3434+
3435+ >>> df.nsmallest(1, 'A', keep = "all")
3436+ A B C
3437+ 0 1 5 a
3438+ 1 1 6 b
3439+ <BLANKLINE>
3440+ [2 rows x 3 columns]
3441+
3442+ Returns the first row with the smallest value in 'A', default behavior in case of ties:
3443+
3444+ >>> df.nsmallest(1, 'A')
3445+ A B C
3446+ 0 1 5 a
3447+ <BLANKLINE>
3448+ [1 rows x 3 columns]
3449+
3450+ Returns the last row with the smallest value in 'A' in case of ties:
3451+
3452+ >>> df.nsmallest(1, 'A', keep = "last")
3453+ A B C
3454+ 1 1 6 b
3455+ <BLANKLINE>
3456+ [1 rows x 3 columns]
3457+
3458+ Returns rows with the smallest values in 'A' and 'C'
3459+
3460+ >>> df.nsmallest(1, ['A', 'C'])
3461+ A B C
3462+ 0 1 5 a
3463+ <BLANKLINE>
3464+ [1 rows x 3 columns]
3465+
3466+
33623467 Args:
33633468 n (int):
33643469 Number of rows to return.
@@ -3384,23 +3489,61 @@ def nsmallest(self, n: int, columns, keep: str = "first"):
33843489
33853490 def idxmin (self ):
33863491 """
3387- Return index of first occurrence of minimum over requested axis .
3492+ Return index of first occurrence of minimum over columns .
33883493
33893494 NA/null values are excluded.
33903495
3496+ **Examples:**
3497+
3498+ >>> import bigframes.pandas as bpd
3499+ >>> bpd.options.display.progress_bar = None
3500+
3501+ >>> df = bpd.DataFrame({"A": [3, 1, 2], "B": [1, 2, 3]})
3502+ >>> df
3503+ A B
3504+ 0 3 1
3505+ 1 1 2
3506+ 2 2 3
3507+ <BLANKLINE>
3508+ [3 rows x 2 columns]
3509+
3510+ >>> df.idxmin()
3511+ A 1
3512+ B 0
3513+ dtype: Int64
3514+
33913515 Returns:
3392- Series: Indexes of minima along the specified axis .
3516+ Series: Indexes of minima along the columns .
33933517 """
33943518 raise NotImplementedError (constants .ABSTRACT_METHOD_ERROR_MESSAGE )
33953519
33963520 def idxmax (self ):
33973521 """
3398- Return index of first occurrence of maximum over requested axis .
3522+ Return index of first occurrence of maximum over columns .
33993523
34003524 NA/null values are excluded.
34013525
3526+ **Examples:**
3527+
3528+ >>> import bigframes.pandas as bpd
3529+ >>> bpd.options.display.progress_bar = None
3530+
3531+ >>> df = bpd.DataFrame({"A": [3, 1, 2], "B": [1, 2, 3]})
3532+ >>> df
3533+ A B
3534+ 0 3 1
3535+ 1 1 2
3536+ 2 2 3
3537+ <BLANKLINE>
3538+ [3 rows x 2 columns]
3539+
3540+ >>> df.idxmax()
3541+ A 0
3542+ B 2
3543+ dtype: Int64
3544+
34023545 Returns:
3403- Series: Indexes of maxima along the specified axis .
3546+ Series: Indexes of maxima along the columns .
34043547 """
34053548 raise NotImplementedError (constants .ABSTRACT_METHOD_ERROR_MESSAGE )
34063549
0 commit comments