|
| 1 | +# Copyright 2023 Google LLC |
| 2 | +# |
| 3 | +# Licensed under the Apache License, Version 2.0 (the "License"); |
| 4 | +# you may not use this file except in compliance with the License. |
| 5 | +# You may obtain a copy of the License at |
| 6 | +# |
| 7 | +# http://www.apache.org/licenses/LICENSE-2.0 |
| 8 | +# |
| 9 | +# Unless required by applicable law or agreed to in writing, software |
| 10 | +# distributed under the License is distributed on an "AS IS" BASIS, |
| 11 | +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 12 | +# See the License for the specific language governing permissions and |
| 13 | +# limitations under the License. |
| 14 | + |
| 15 | + |
| 16 | +def test_bigquery_dataframes_examples() -> None: |
| 17 | + # [START bigquery_dataframes_bigquery_methods_struct] |
| 18 | + import bigframes.bigquery as bbq |
| 19 | + import bigframes.pandas as bpd |
| 20 | + |
| 21 | + # Load data from BigQuery |
| 22 | + query_or_table = "bigquery-public-data.ml_datasets.penguins" |
| 23 | + bq_df = bpd.read_gbq(query_or_table) |
| 24 | + |
| 25 | + # Create a new STRUCT Series with subfields for each column in a DataFrames. |
| 26 | + lengths = bbq.struct( |
| 27 | + bq_df[["culmen_length_mm", "culmen_depth_mm", "flipper_length_mm"]] |
| 28 | + ) |
| 29 | + |
| 30 | + lengths.peek() |
| 31 | + # 146 {'culmen_length_mm': 51.1, 'culmen_depth_mm': ... |
| 32 | + # 278 {'culmen_length_mm': 48.2, 'culmen_depth_mm': ... |
| 33 | + # 337 {'culmen_length_mm': 36.4, 'culmen_depth_mm': ... |
| 34 | + # 154 {'culmen_length_mm': 46.5, 'culmen_depth_mm': ... |
| 35 | + # 185 {'culmen_length_mm': 50.1, 'culmen_depth_mm': ... |
| 36 | + # dtype: struct[pyarrow] |
| 37 | + # [END bigquery_dataframes_bigquery_methods_struct] |
| 38 | + |
| 39 | + # [START bigquery_dataframes_bigquery_methods_scalar] |
| 40 | + import bigframes.bigquery as bbq |
| 41 | + import bigframes.pandas as bpd |
| 42 | + |
| 43 | + # Load data from BigQuery |
| 44 | + query_or_table = "bigquery-public-data.ml_datasets.penguins" |
| 45 | + |
| 46 | + # The sql_scalar function can be used to inject SQL syntax that is not supported |
| 47 | + # or difficult to express with the bigframes.pandas APIs. |
| 48 | + bq_df = bpd.read_gbq(query_or_table) |
| 49 | + shortest = bbq.sql_scalar( |
| 50 | + "LEAST({0}, {1}, {2})", |
| 51 | + columns=[ |
| 52 | + bq_df["culmen_depth_mm"], |
| 53 | + bq_df["culmen_length_mm"], |
| 54 | + bq_df["flipper_length_mm"], |
| 55 | + ], |
| 56 | + ) |
| 57 | + |
| 58 | + shortest.peek() |
| 59 | + # 0 |
| 60 | + # 149 18.9 |
| 61 | + # 33 16.3 |
| 62 | + # 296 17.2 |
| 63 | + # 287 17.0 |
| 64 | + # 307 15.0 |
| 65 | + # dtype: Float64 |
| 66 | + # [END bigquery_dataframes_bigquery_methods_scalar] |
| 67 | + assert bq_df is not None |
| 68 | + assert lengths is not None |
| 69 | + assert shortest is not None |
0 commit comments