|
| 1 | +# Copyright 2023 Google LLC |
| 2 | +# |
| 3 | +# Licensed under the Apache License, Version 2.0 (the "License"); |
| 4 | +# you may not use this file except in compliance with the License. |
| 5 | +# You may obtain a copy of the License at |
| 6 | +# |
| 7 | +# http://www.apache.org/licenses/LICENSE-2.0 |
| 8 | +# |
| 9 | +# Unless required by applicable law or agreed to in writing, software |
| 10 | +# distributed under the License is distributed on an "AS IS" BASIS, |
| 11 | +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 12 | +# See the License for the specific language governing permissions and |
| 13 | +# limitations under the License. |
| 14 | + |
| 15 | +"""Performance benchmarking helper methods. This is not an officially supported Google product.""" |
| 16 | + |
| 17 | +import csv |
| 18 | +import logging |
| 19 | +import os |
| 20 | +import random |
| 21 | +import shutil |
| 22 | +import time |
| 23 | +import uuid |
| 24 | + |
| 25 | +from google.cloud import storage |
| 26 | + |
| 27 | + |
| 28 | +##### DEFAULTS & CONSTANTS ##### |
| 29 | +HEADER = [ |
| 30 | + "Op", |
| 31 | + "ObjectSize", |
| 32 | + "AppBufferSize", |
| 33 | + "LibBufferSize", |
| 34 | + "Crc32cEnabled", |
| 35 | + "MD5Enabled", |
| 36 | + "ApiName", |
| 37 | + "ElapsedTimeUs", |
| 38 | + "CpuTimeUs", |
| 39 | + "Status", |
| 40 | +] |
| 41 | +CHECKSUM = ["md5", "crc32c", None] |
| 42 | +TIMESTAMP = time.strftime("%Y%m%d-%H%M%S") |
| 43 | +DEFAULT_API = "JSON" |
| 44 | +DEFAULT_BUCKET_NAME = f"pybench{TIMESTAMP}" |
| 45 | +DEFAULT_BUCKET_REGION = "US-WEST1" |
| 46 | +DEFAULT_OBJECT_RANGE_SIZE_BYTES = "1048576" # 1 MiB |
| 47 | +DEFAULT_NUM_SAMPLES = 8000 |
| 48 | +DEFAULT_NUM_PROCESSES = 16 |
| 49 | +DEFAULT_LIB_BUFFER_SIZE = 104857600 # 100MB |
| 50 | +DEFAULT_CHUNKSIZE = 104857600 # 100 MB https://github.com/googleapis/python-storage/blob/main/google/cloud/storage/blob.py#L139 |
| 51 | +NOT_SUPPORTED = -1 |
| 52 | +DEFAULT_BASE_DIR = "tm-perf-metrics" |
| 53 | +DEFAULT_OUTPUT_FILE = f"output_bench{TIMESTAMP}.csv" |
| 54 | +DEFAULT_CREATE_SUBDIR_PROBABILITY = 0.1 |
| 55 | +SSB_SIZE_THRESHOLD_BYTES = 1048576 |
| 56 | + |
| 57 | + |
| 58 | +##### UTILITY METHODS ##### |
| 59 | + |
| 60 | + |
| 61 | +# Returns a boolean value with the provided probability. |
| 62 | +def weighted_random_boolean(create_subdir_probability): |
| 63 | + return random.uniform(0.0, 1.0) <= create_subdir_probability |
| 64 | + |
| 65 | + |
| 66 | +# Creates a random file with the given file name, path and size. |
| 67 | +def generate_random_file(file_name, file_path, size): |
| 68 | + with open(os.path.join(file_path, file_name), "wb") as file_obj: |
| 69 | + file_obj.write(os.urandom(size)) |
| 70 | + |
| 71 | + |
| 72 | +# Creates a random directory structure consisting of subdirectories and random files. |
| 73 | +# Returns an array of all the generated paths and total size in bytes of all generated files. |
| 74 | +def generate_random_directory( |
| 75 | + max_objects, |
| 76 | + min_file_size, |
| 77 | + max_file_size, |
| 78 | + base_dir, |
| 79 | + create_subdir_probability=DEFAULT_CREATE_SUBDIR_PROBABILITY, |
| 80 | +): |
| 81 | + directory_info = { |
| 82 | + "paths": [], |
| 83 | + "total_size_in_bytes": 0, |
| 84 | + } |
| 85 | + |
| 86 | + file_path = base_dir |
| 87 | + os.makedirs(file_path, exist_ok=True) |
| 88 | + for i in range(max_objects): |
| 89 | + if weighted_random_boolean(create_subdir_probability): |
| 90 | + file_path = f"{file_path}/{uuid.uuid4().hex}" |
| 91 | + os.makedirs(file_path, exist_ok=True) |
| 92 | + directory_info["paths"].append(file_path) |
| 93 | + else: |
| 94 | + file_name = uuid.uuid4().hex |
| 95 | + rand_size = random.randint(min_file_size, max_file_size) |
| 96 | + generate_random_file(file_name, file_path, rand_size) |
| 97 | + directory_info["total_size_in_bytes"] += rand_size |
| 98 | + directory_info["paths"].append(os.path.join(file_path, file_name)) |
| 99 | + |
| 100 | + return directory_info |
| 101 | + |
| 102 | + |
| 103 | +def results_to_csv(res): |
| 104 | + results = [] |
| 105 | + for metric in HEADER: |
| 106 | + results.append(res.get(metric, -1)) |
| 107 | + return results |
| 108 | + |
| 109 | + |
| 110 | +def convert_to_csv(filename, results, workers): |
| 111 | + with open(filename, "w") as file: |
| 112 | + writer = csv.writer(file) |
| 113 | + writer.writerow(HEADER) |
| 114 | + # Benchmarking main script uses Multiprocessing Pool.map(), |
| 115 | + # thus results is structured as List[List[Dict[str, any]]]. |
| 116 | + for result in results: |
| 117 | + for row in result: |
| 118 | + writer.writerow(results_to_csv(row)) |
| 119 | + |
| 120 | + |
| 121 | +def convert_to_cloud_monitoring(bucket_name, results, workers): |
| 122 | + # Benchmarking main script uses Multiprocessing Pool.map(), |
| 123 | + # thus results is structured as List[List[Dict[str, any]]]. |
| 124 | + for result in results: |
| 125 | + for res in result: |
| 126 | + range_read_size = res.get("RangeReadSize", 0) |
| 127 | + object_size = res.get("ObjectSize") |
| 128 | + elapsed_time_us = res.get("ElapsedTimeUs") |
| 129 | + status = res.get("Status").pop() # convert ["OK"] --> "OK" |
| 130 | + |
| 131 | + # Handle range reads and calculate throughput using range_read_size. |
| 132 | + if range_read_size > 0: |
| 133 | + size = range_read_size |
| 134 | + else: |
| 135 | + size = object_size |
| 136 | + |
| 137 | + # If size is greater than the defined threshold, report in MiB/s, otherwise report in KiB/s. |
| 138 | + if size >= SSB_SIZE_THRESHOLD_BYTES: |
| 139 | + throughput = (size / 1024 / 1024) / (elapsed_time_us / 1_000_000) |
| 140 | + else: |
| 141 | + throughput = (size / 1024) / (elapsed_time_us / 1_000_000) |
| 142 | + |
| 143 | + cloud_monitoring_output = ( |
| 144 | + "throughput{" |
| 145 | + + "library=python-storage," |
| 146 | + + "api={},".format(res.get("ApiName")) |
| 147 | + + "op={},".format(res.get("Op")) |
| 148 | + + "workers={},".format(workers) |
| 149 | + + "object_size={},".format(object_size) |
| 150 | + + "transfer_offset={},".format(res.get("TransferOffset", 0)) |
| 151 | + + "transfer_size={},".format(res.get("TransferSize", object_size)) |
| 152 | + + "app_buffer_size={},".format(res.get("AppBufferSize")) |
| 153 | + + "chunksize={},".format(res.get("TransferSize", object_size)) |
| 154 | + + "crc32c_enabled={},".format(res.get("Crc32cEnabled")) |
| 155 | + + "md5_enabled={},".format(res.get("MD5Enabled")) |
| 156 | + + "cpu_time_us={},".format(res.get("CpuTimeUs")) |
| 157 | + + "peer=''," |
| 158 | + + f"bucket_name={bucket_name}," |
| 159 | + + "retry_count=''," |
| 160 | + + f"status={status}" |
| 161 | + + "}" |
| 162 | + f"{throughput}" |
| 163 | + ) |
| 164 | + |
| 165 | + print(cloud_monitoring_output) |
| 166 | + |
| 167 | + |
| 168 | +def cleanup_directory_tree(directory): |
| 169 | + """Clean up directory tree on disk.""" |
| 170 | + try: |
| 171 | + shutil.rmtree(directory) |
| 172 | + except Exception as e: |
| 173 | + logging.exception(f"Caught an exception while deleting local directory\n {e}") |
| 174 | + |
| 175 | + |
| 176 | +def cleanup_file(file_path): |
| 177 | + """Clean up local file on disk.""" |
| 178 | + try: |
| 179 | + os.remove(file_path) |
| 180 | + except Exception as e: |
| 181 | + logging.exception(f"Caught an exception while deleting local file\n {e}") |
| 182 | + |
| 183 | + |
| 184 | +def get_bucket_instance(bucket_name): |
| 185 | + client = storage.Client() |
| 186 | + bucket = client.bucket(bucket_name) |
| 187 | + if not bucket.exists(): |
| 188 | + client.create_bucket(bucket) |
| 189 | + return bucket |
| 190 | + |
| 191 | + |
| 192 | +def cleanup_bucket(bucket): |
| 193 | + # Delete blobs first as the bucket may contain more than 256 blobs. |
| 194 | + try: |
| 195 | + blobs = bucket.list_blobs() |
| 196 | + for blob in blobs: |
| 197 | + blob.delete() |
| 198 | + except Exception as e: |
| 199 | + logging.exception(f"Caught an exception while deleting blobs\n {e}") |
| 200 | + # Delete bucket. |
| 201 | + try: |
| 202 | + bucket.delete(force=True) |
| 203 | + except Exception as e: |
| 204 | + logging.exception(f"Caught an exception while deleting bucket\n {e}") |
| 205 | + |
| 206 | + |
| 207 | +def get_min_max_size(object_size): |
| 208 | + # Object size accepts a single value in bytes or a range in bytes min..max |
| 209 | + if object_size.find("..") < 0: |
| 210 | + min_size = int(object_size) |
| 211 | + max_size = int(object_size) |
| 212 | + else: |
| 213 | + split_sizes = object_size.split("..") |
| 214 | + min_size = int(split_sizes[0]) |
| 215 | + max_size = int(split_sizes[1]) |
| 216 | + return min_size, max_size |
0 commit comments