|
15 | 15 | }, |
16 | 16 | "outputs": [], |
17 | 17 | "source": [ |
18 | | - ":import \"fmt\"" |
19 | | - ] |
20 | | - }, |
21 | | - { |
22 | | - "cell_type": "code", |
23 | | - "execution_count": 2, |
24 | | - "metadata": { |
25 | | - "collapsed": false |
26 | | - }, |
27 | | - "outputs": [], |
28 | | - "source": [ |
29 | | - ":import \"github.com/sjwhitworth/golearn/base\"" |
30 | | - ] |
31 | | - }, |
32 | | - { |
33 | | - "cell_type": "code", |
34 | | - "execution_count": 3, |
35 | | - "metadata": { |
36 | | - "collapsed": true |
37 | | - }, |
38 | | - "outputs": [], |
39 | | - "source": [ |
40 | | - ":import \"github.com/sjwhitworth/golearn/evaluation\"" |
41 | | - ] |
42 | | - }, |
43 | | - { |
44 | | - "cell_type": "code", |
45 | | - "execution_count": 4, |
46 | | - "metadata": { |
47 | | - "collapsed": true |
48 | | - }, |
49 | | - "outputs": [], |
50 | | - "source": [ |
51 | | - ":import \"github.com/sjwhitworth/golearn/knn\"" |
| 18 | + "import (\n", |
| 19 | + " \"fmt\"\n", |
| 20 | + " \"github.com/sjwhitworth/golearn/base\"\n", |
| 21 | + " \"github.com/sjwhitworth/golearn/evaluation\"\n", |
| 22 | + " \"github.com/sjwhitworth/golearn/knn\"\n", |
| 23 | + ")" |
52 | 24 | ] |
53 | 25 | }, |
54 | 26 | { |
|
125 | 97 | }, |
126 | 98 | { |
127 | 99 | "cell_type": "code", |
128 | | - "execution_count": 5, |
| 100 | + "execution_count": 2, |
129 | 101 | "metadata": { |
130 | 102 | "collapsed": false |
131 | 103 | }, |
|
224 | 196 | "Reference Class\tTrue Positives\tFalse Positives\tTrue Negatives\tPrecision\tRecall\tF1 Score\n", |
225 | 197 | "---------------\t--------------\t---------------\t--------------\t---------\t------\t--------\n", |
226 | 198 | "Iris-setosa\t30\t\t0\t\t58\t\t1.0000\t\t1.0000\t1.0000\n", |
227 | | - "Iris-virginica\t27\t\t1\t\t58\t\t0.9643\t\t0.9310\t0.9474\n", |
228 | | - "Iris-versicolor\t28\t\t2\t\t57\t\t0.9333\t\t0.9655\t0.9492\n", |
229 | | - "Overall accuracy: 0.9659\n", |
| 199 | + "Iris-virginica\t28\t\t1\t\t58\t\t0.9655\t\t0.9655\t0.9655\n", |
| 200 | + "Iris-versicolor\t28\t\t1\t\t58\t\t0.9655\t\t0.9655\t0.9655\n", |
| 201 | + "Overall accuracy: 0.9773\n", |
230 | 202 | "\n" |
231 | 203 | ] |
232 | 204 | }, |
233 | | - "execution_count": 5, |
| 205 | + "execution_count": 2, |
234 | 206 | "metadata": {}, |
235 | 207 | "output_type": "execute_result" |
236 | 208 | } |
|
239 | 211 | "// Load in a dataset, with headers. Header attributes will be stored.\n", |
240 | 212 | "// Think of instances as a Data Frame structure in R or Pandas.\n", |
241 | 213 | "// You can also create instances from scratch.\n", |
242 | | - "rawData, err := base.ParseCSVToInstances(\"datasets/iris.csv\", false)\n", |
| 214 | + "rawData, err := base.ParseCSVToInstances(\"iris.csv\", false)\n", |
243 | 215 | "\n", |
244 | 216 | "//Initialises a new KNN classifier\n", |
245 | 217 | "cls := knn.NewKnnClassifier(\"euclidean\", 2)\n", |
|
0 commit comments