@@ -6,9 +6,7 @@ tags: [analysis, Fourier analysis, Fourier Series]
6
6
use_math : true
7
7
publish : false
8
8
author_profile : false
9
- toc :
10
- enabled : True
11
- level : 2
9
+ toc : true
12
10
---
13
11
14
12
약 일년 반 전, 확률 및 통계 스터디를 하는 과정에서 Fourier analysis에 대해 잠시 공부한 적이 있었다.
143
141
144
142
We analyze and solve the standard one and simply apply change of variables for the general cases.
145
143
146
- ### 1.2 Solution to the wave equation
147
-
148
- <!-- There are two kinds of solution to the wave equation ; -->
149
- We can get two kinds of solution to the wave equation ;
150
- (1) using traveling waves
151
- (2) using the superposition of standing waves
152
-
153
- #### A solution using traveling waves
154
-
155
144
Consider a physical problem of a string where $0\le x\le \pi$ :
156
145
157
146
$$
@@ -168,6 +157,15 @@ u(0,t)=u(\pi,t)=0
168
157
\tag a
169
158
$$
170
159
160
+ ### 1.2 Solution to the wave equation
161
+
162
+ <!-- There are two kinds of solution to the wave equation ; -->
163
+ We can get two kinds of solution to the wave equation ;
164
+ (1) using traveling waves
165
+ (2) using the superposition of standing waves
166
+
167
+ #### A solution using traveling waves
168
+
171
169
We claim that (a) has the general solution of the form
172
170
173
171
$$
@@ -211,11 +209,8 @@ Then
211
209
212
210
$$
213
211
\begin{align*}
214
- u(0,t)
215
- &=\frac12\left[f(t)+f(-t)\right]+\frac12\int_{-t}^tg(y)\,dy\\
216
- &=0\\
217
- u(\pi,t)&=\frac12\left[f(\pi+t)+f(\pi-t)\right]+\frac12\int_{\pi-t}^{\pi+t}g(y)\,dy\\
218
- &=0.
212
+ u(0,t)&=\frac12\left[f(t)+f(-t)\right]+\frac12\int_{-t}^tg(y)\,dy=0\\
213
+ u(\pi,t)&=\frac12\left[f(\pi+t)+f(\pi-t)\right]+\frac12\int_{\pi-t}^{\pi+t}g(y)\,dy=0.
219
214
\end{align*}
220
215
$$
221
216
@@ -320,15 +315,255 @@ Note that $C_1'+C_2'=0$ since $f(x)=F(x)+G(x)$.
320
315
Therefore,
321
316
322
317
$$
323
- \begin{align* }
318
+ \begin{aligned }
324
319
u(x,t)
325
320
&=F(x+t)+G(x-t)\\
326
321
&=\frac12f(x+t)+\frac12\int_0^{x+t}g(y)\,dy+C_1'
327
322
+\frac12f(x-t)-\frac12\int_0^{x-t}g(y)\,dy+C_2'\\
328
323
&=\frac12\left[f(x+t)+f(x-t)\right]+\frac12\int_{x-t}^{x+t}g(y)\,dy.
329
- \end{align*}
324
+ \end{aligned}
325
+ $$
326
+
327
+ #### A solution using superposition of standing waves
328
+
329
+ We claim that (a) has the general solution of the form
330
+
331
+ $$ u(x,t)=\sum_{m=1}^\infty\sin mx\left(A_m\cos mt+B_m\sin mt\right)\tag c $$
332
+
333
+ where
334
+
335
+ $$
336
+ \begin{aligned}
337
+ A_n&=\frac2\pi\int_0^\pi f(x)\sin nx\,dx\\
338
+ B_n&=\frac2{n\pi}\int_0^\pi g(x)\sin nx\,dx\\
339
+ \end{aligned}
340
+ $$
341
+
342
+
343
+ Separating variables $x$ and $t$, let
344
+
345
+ $$ u(x,t)=\phi(x)\psi(t). $$
346
+
347
+ Then, the wave equation becomes
348
+
349
+ $$ \phi(x)\psi''(t)=\phi''(x)\psi(t). $$
350
+
351
+ This implies, if $\phi(x)\ne0$ and $\psi(t)\ne0$,
352
+
353
+ $$ \frac{\psi''(t)}{\psi(t)}=\frac{\phi''(x)}{\phi(x)}. $$
354
+
355
+ Since LHS is independent of $x$ and RHS is independent of $t$, it is independent of both of them.
356
+ Let this constant be $\lambda$.
357
+ Then
358
+
359
+ $$
360
+ \begin{aligned}
361
+ \psi''(t)-\lambda\psi(t)&=0\\
362
+ \phi''(x)-\lambda\phi(x)&=0
363
+ \end{aligned}\tag3
364
+ $$
365
+
366
+ As in the simple harmonic motion in (1), these ODEs has general solutions
367
+
368
+ $$
369
+ \begin{aligned}
370
+ \psi(t)&=A\cos mt + B\sin mt\\
371
+ \phi(x)&=\tilde A\cos mx + \tilde B\sin mx
372
+ \end{aligned}
330
373
$$
331
374
375
+ by 3.6, where $m^2=-\lambda$.
376
+ Apply the fourth condition of (a).
377
+ Since the string has zero displacement at $x=0$,
378
+
379
+ $$ 0=\tilde A\left(A\cos mt + B\sin mt\right) $$
380
+
381
+ for every $t$.
382
+ Thus, $\tilde A=0$.
383
+ At $x=\pi$,
384
+
385
+ $$ 0=\tilde B\sin m\pi\left(A\cos mt + B\sin mt\right) $$
386
+
387
+ for every $t$.
388
+ Avoiding the trivial case when $\tilde B=0$, $m$ is an integer.
389
+ For every integer $m$,
390
+
391
+ $$ u_m(x,t)=\sin mx\left(A\cos mt + B\sin mt\right) $$
392
+
393
+ is a solution for the wave equation.
394
+
395
+ <!-- Let
396
+
397
+ $$u_m(x,t)=\sin mx\left(A_m\cos mt + B_m\sin mt\right)$$ -->
398
+
399
+ <div class =" notice--danger " >
400
+ <b >Remark </b > <br >
401
+ Letting, for example, $A_m=1$, $B_m=0$,
402
+ $$ u_1(x,t)=\cos t\sin x $$
403
+ is called the fundamental tone or the first harmonic.
404
+ $$ u_2(x,t)=\cos2t\sin2x $$
405
+ is called the first overtone or the second harmonic.
406
+ $$ u_3(x,t)=\cos3t\sin3x $$
407
+ is called second overtone or the third harmonic, and so on.
408
+
409
+ For fixed $t$, $u_m(x,t)=0$ if $x=\frac\pi mk$ for all $k\in\mathbb Z$.
410
+ For each $k$, $x=\frac\pi mk$ is called a node, while $x=\frac\pi m\left(k+\frac12\right)$ is called an antinode.
411
+ </div >
412
+
413
+ The wave equation is linear in that any linear combination of solutions for the wave equation solves the equation too.
414
+ Thus,
415
+
416
+ $$ u(x,t)=\sum_{m=-\infty}^\infty\sin mx\left(A_m\cos mt+B_m\sin mt\right) $$
417
+
418
+ also satisfy the wave equation.
419
+ Suppose that this solution is a general one (we omit the proof here.)
420
+ Since $u_m=0$ for $m=0$ and
421
+
422
+ $$
423
+ \begin{aligned}
424
+ u_{-m}(x,t)
425
+ &=\sin(-mx)\left(A_m\cos(-mt)+B_m\sin(-mt)\right)\\
426
+ &=\sin mx\left((-A_m)\cos mt+B_m\sin mt\right),
427
+ \end{aligned}
428
+ $$
429
+
430
+ we can write, alternatively as
431
+
432
+ $$ u(x,t)=\sum_{m=1}^\infty\sin mx\left(A_m\cos mt+B_m\sin mt\right)\tag4 $$
433
+
434
+ for different $A_m$ and $B_m$.
435
+ By the initial displacement condition $u(x,0)=f(x)$ and by the initial velocity condition $u_t(x,0)=g(x)$
436
+
437
+ $$
438
+ \begin{aligned}
439
+ f(x)&=\sum_{m=1}^\infty A_m\sin mx\\
440
+ g(x)&=\sum_{m=1}^\infty mB_m\sin mx.
441
+ \end{aligned}
442
+ $$
443
+
444
+ Multiplying $\sin nx$ and integrating over $[ 0,\pi] $ for $n\ge1$,
445
+
446
+ $$
447
+ \begin{aligned}
448
+ \int_0^\pi f(x)\sin nx\,dx
449
+ &=\sum_{m=1}^\infty A_m\int_0^\pi\sin mx\sin nx\,dx\\
450
+ &=\sum_{m=1}^\infty\frac{A_m}2\int_0^\pi-\cos(m+n)x+\cos(m-n)x\,dx\\
451
+ &=\frac{A_n}2\int_0^\pi\,dx\\
452
+ &=A_n\times\frac\pi2\\
453
+ \int_0^\pi g(x)\sin nx\,dx
454
+ &=\sum_{m=1}^\infty mB_m\int_0^\pi\sin mx\sin nx\,dx\\
455
+ &=\sum_{m=1}^\infty\frac{mB_m}2\int_0^\pi-\cos(m+n)x+\cos(m-n)x\,dx\\
456
+ &=\frac{nB_n}2\int_0^\pi\,dx\\
457
+ &=nB_n\times\frac\pi2.
458
+ \end{aligned}
459
+ $$
460
+
461
+ Thus, (Fourier sine coeffcient of $f$)
462
+
463
+ $$
464
+ \begin{aligned}
465
+ A_n&=\frac2\pi\int_0^\pi f(x)\sin nx\,dx\\
466
+ B_n&=\frac2{n\pi}\int_0^\pi g(x)\sin nx\,dx.
467
+ \end{aligned}
468
+ $$
469
+
470
+ And the claim is now proved.
471
+
472
+ Note that this argument assumes that a * reasonable* function $f$ on $[ 0,\pi] $ can be expressed as a linear combination of sine functions ;
473
+
474
+ $$
475
+ f(x)=\sum_{m=1}^\infty A_m\sin mx\tag{$\ast$}
476
+ $$
477
+
478
+ Suppose further that this class of function can also be expressed as cosine series too ;
479
+
480
+ $$
481
+ g(x)=\sum_{m=1}^\infty A'_m\cos mx
482
+ $$
483
+
484
+ If an odd function $f$ on $[ -\pi,\pi] $ is given, the restriction on $[ 0,\pi] $ can be expressed as $(\ast)$ and $(\ast)$ is also valid for $f$ on $[ -\pi,\pi] $ too;
485
+
486
+ $$
487
+ f(-x)=-f(x)=-\sum_{m=1}^\infty A_m\sin mx=\sum_{m=1}^\infty A_m\sin(-mx).
488
+ $$
489
+
490
+ If an even function $g$ on $[ -\pi,\pi] $ is given, the restriction on $[ 0,\pi] $ can be expressed as cosine series.
491
+ The equation is valid for $g$ on $[ -\pi, \pi] $ too, by the similar fashion.
492
+
493
+ Now suppose that a function $F$ on $[ -\pi, \pi] $ is given.
494
+ Since $F$ can be expressed as $f+g$,
495
+
496
+ $$
497
+ \begin{aligned}
498
+ F(x)
499
+ &=f(x)+g(x)\\
500
+ &=\sum_{m=1}^\infty\left(A_m\sin mx + A'_m\cos mx\right).
501
+ \end{aligned}
502
+ $$
503
+
504
+ By Euler identity, (we can choose $a_m=\frac{A_m'-A_mi}2$ and $a_ {-m}=\frac{A_m'+A_mi}2$)
505
+
506
+ $$
507
+ F(x) = \sum_{m=-\infty}^\infty a_me^{imx}.
508
+ $$
509
+
510
+ Multiplying $e^{-inx}$ and integrating over $[ -\pi, \pi] $,
511
+
512
+ $$
513
+ \begin{aligned}
514
+ \int_{-\pi}^\pi F(x)e^{-inx}\,dx
515
+ &=\sum_{m=-\infty}^\infty a_m\int_{-\pi}^\pi e^{i(m-n)x}\,dx\\
516
+ &=a_n\int_{-\pi}^\pi\,dx\\
517
+ &=a_n\times2\pi.
518
+ \end{aligned}
519
+ $$
520
+
521
+ Thus,
522
+
523
+ $$
524
+ a_n = \frac1{2\pi}\int_{-\pi}^\pi F(x)e^{-inx}\,dx.
525
+ $$
526
+
527
+ Such $a_n$ is called the * Fourier coefficient* of $F$.
528
+
529
+ ### 1.3 Example : The plucked string
530
+
531
+ Consider the case when the initial string is located as the two line segments
532
+
533
+ $$
534
+ f(x)
535
+ =\begin{cases}
536
+ \frac{hx}p&(0\le x\le p)\\
537
+ \frac{h(\pi-x)}{\pi-p}&(p\le x\le\pi)
538
+ \end{cases}
539
+ $$
540
+
541
+ and when there is no initial movement ; $g(x)=0$.
542
+ Following (c),
543
+
544
+ $$
545
+ f(x)=\sum_m A_m\sin mx,\quad
546
+ A_m=\frac{2h\sin mp}{m^2p(\pi-p)}
547
+ $$
548
+
549
+ by 3.9.
550
+ Since $g(x)=0$, $B_m=0$ for all $m$.
551
+ Thus (4) now reduces to
552
+
553
+ $$
554
+ \begin{aligned}
555
+ u(x,t)
556
+ &=\sum_{m=1}^\infty A_m\sin mx\cos mt\\
557
+ &=\frac12\sum_{n=1}^\infty A_m\left[\sin m(x+t)+\sin m(x-t)\right]\\
558
+ &=\frac{\sum_{n=1}^\infty A_m\sin m(x+t)+\sum_{n=1}^\infty A_m\sin m(x-t)}2\\
559
+ &=\frac{f(x+t)+f(x-t)}2
560
+ \end{aligned}
561
+ $$
562
+
563
+ The above equation also corresponds to (b) since $g(x)=0$.
564
+ Note that the function $f$ in the last expression is the extended version (on $\mathbb R$) of the original function $f$ on $[ 0,\pi] $.
565
+
566
+
332
567
## 2. The Heat Equation
333
568
334
569
## 3. Exercises
@@ -972,4 +1207,41 @@ and
972
1207
$$
973
1208
\lim_{h\to0}\frac{F(x+h)+F(x-h)-2F(x)}{h^2}
974
1209
=\lim_{h\to0}\left(F''(x)+\phi(h)+\phi(-h)\right)=F''(x)
975
- $$
1210
+ $$
1211
+
1212
+ ### 3.9
1213
+
1214
+ Consider the case of plucked string ;
1215
+
1216
+ $$
1217
+ f(x)
1218
+ =\begin{cases}
1219
+ \frac{hx}p&(0\le x\le p)\\
1220
+ \frac{h(\pi-x)}{\pi-p}&(p\le x\le\pi)
1221
+ \end{cases}
1222
+ $$
1223
+
1224
+ Calculate the Fourier sine coefficient sine coefficient $A_m$.
1225
+ For what position of $p$ are the second, fourth, $\cdots$ harmonics missing?
1226
+ For what position of $p$ are the third, sixth, $\cdots$ harmonics missing?
1227
+
1228
+ (proof)
1229
+
1230
+ $$
1231
+ \begin{aligned}
1232
+ A_m
1233
+ &=\frac2\pi\int_0^\pi f(x)\sin mx\,dx\\
1234
+ &=\frac{2h}{\pi p}\int_0^px\sin mx\,dx
1235
+ +\frac{2h}{\pi(\pi-p)}\int_p^{\pi}(\pi-x)\sin mx\,dx\\
1236
+ &=\frac{2h}{\pi p}\left(-\frac1mp\cos np+\frac1{m^2}\sin mp\right)
1237
+ +\frac{2h}{\pi(\pi-p)}\left(\frac1m(\pi-p)\cos mp+\frac1{m^2}\sin mp\right)\\
1238
+ &=\frac{2h\sin mp}{m^2p(\pi-p)}
1239
+ \end{aligned}
1240
+ $$
1241
+
1242
+ $A_2=0$ iff $p=\frac\pi2k$ and $A_4=0$ iff $p=\frac\pi4k$ for an integer $k$.
1243
+ Note also that neither $p=0$ nor $p=\pi$ as long as $h\ne0$.
1244
+ So if $p=\frac\pi2$, then $A_2=A_4=\cdots=0$ and the even harmonics are missing.
1245
+
1246
+ $A_3=0$ iff $p=\frac\pi3k$ and $A_6=0$ iff $p=\frac\pi6k$ for an integer $k$.
1247
+ If $p=\frac\pi3$ or $p=\frac23p$, then $A_3=A_6=\cdots=0$ and the harmonics of $3k$ are missing.
0 commit comments