Skip to content

Commit aecf347

Browse files
committed
last modifications
1 parent 421e5b1 commit aecf347

File tree

2 files changed

+41
-2
lines changed

2 files changed

+41
-2
lines changed

_posts/2025-03-17-wheels.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -179,7 +179,7 @@ $$\alpha = \frac{\beta_-+\beta_+}2$$
179179
$$\alpha'\perp\beta_-\beta_+$$
180180

181181
이다.
182-
일반성을 잃지 않고 모든 $s$에 대하여 $\left|\left|\alpha'(s)\right|\right|=1$이라고 하고 $T(s)$를 $T(s)=\alpha'(s)$라고 정의하면 이것은 $\alpha$에 대한 통상적인 unit tangent vector가 된다.
182+
일반성을 잃지 않고 모든 $s$에 대하여 $\left|\left|\alpha'(s)\right|\right|=1$이라고 하고 $T(s)$를 $T(s)=\alpha'(s)$라고 정의하면 이것은 $\alpha$에 대한 통상적인 principal unit tangent vector가 된다.
183183

184184
$$T\cdot T = \left|\left|T\right|\right|^2=1$$
185185

@@ -188,7 +188,7 @@ $$T\cdot T = \left|\left|T\right|\right|^2=1$$
188188
$$T\cdot T' + T'\cdot T=0,$$
189189

190190
즉, $T\cdot T'=0$이다.
191-
$T(s)$를 양의방향(시계반대방향)으로 회전한 벡터를 $N(s)$라고 하면 이것은 통상적인 unit normal vector가 되며, 앞서 논리와 마찬가지로 하면 $N\cdot N'=0$이다.
191+
$T(s)$를 양의방향(시계반대방향)으로 회전한 벡터를 $N(s)$라고 하면 이것은 통상적인 principal unit normal vector가 되며, 앞서 논리와 마찬가지로 하면 $N\cdot N'=0$이다.
192192
또한, $T(s)$와 $N(s)$는 평면의 orthonormal basis를 이루고 따라서
193193

194194
$$T'(s)=\kappa(s)N(s)$$

_posts_hided/test.md

Lines changed: 39 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,39 @@
1+
# first
2+
3+
Consider a plain $\mathbb R^2$.
4+
For some unit vector (that we would call 'the principal unit tangent vector') $T(s)$, we can rotate $T(s)$ by $\frac\pi2$ to get $N(s)$ (that we would call 'principal normal tangent vector').
5+
It is elementary to show that $T(s)\cdot T'(s)$ so that there exists a real number $\kappa(s)$ such that $T'(s)=\kappa(s)N(s)$.
6+
We call $\kappa$, the (signed) curvature.
7+
It follows that
8+
9+
$$\kappa(s)=\kappa(s)N(s)\cdot N(s)=T'(s)\cdot N(s).$$
10+
11+
And I'll do some computation, starting from $T(s)=(\cos\theta,\sin\theta)$.
12+
Surely, $\theta$ is a function of $s$.
13+
Then
14+
$$
15+
T'(s)=\frac{d\theta}{ds}(-\sin\theta,\cos\theta)
16+
$$
17+
18+
# second
19+
20+
Consider a plain $\mathbb R^2$.
21+
For some unit vector $T(s)$ (that we would call 'the principal unit tangent vector'), we can calculate $N(s)$ by
22+
23+
$$
24+
N(s) = \frac{T'(s)}{\lvert T'(s)\rvert}
25+
$$
26+
27+
that we would call 'the principal normal tangent vector'.
28+
It is elementary to show that $T(s)\perp T'(s)$ so that there exists a real number $\kappa(s)$ such that $T'(s)=\kappa(s)N(s)$.
29+
We call $\kappa(s)$, the (signed) curvature.
30+
It follows that
31+
32+
$$\kappa(s)=\kappa(s)N(s)\cdot N(s)=T'(s)\cdot N(s).$$
33+
34+
And I'll do some computation, starting from $T(s)=(\cos\theta,\sin\theta)$.
35+
Surely, $\theta$ is a function of $s$.
36+
Then
37+
$$
38+
T'(s)=\frac{d\theta}{ds}(-\sin\theta,\cos\theta)
39+
$$

0 commit comments

Comments
 (0)