diff --git a/src/benchmark.jl b/src/benchmark.jl index 2cc669f..33cd018 100644 --- a/src/benchmark.jl +++ b/src/benchmark.jl @@ -79,18 +79,14 @@ function julia_jet_process_avg_time(events::Vector{Vector{T}}; repeats::Int = 1) where {T <: JetReconstruction.FourMomentum} @info "Will process $(size(events)[1]) events, repeating $(repeats) time(s)" - # Set consistent algorithm and power - (p, algorithm) = JetReconstruction.get_algorithm_power_consistency(p = p, - algorithm = algorithm) - n_events = length(events) # Warmup code if we are doing a multi-sample timing run if nsamples > 1 @info "Doing initial warm-up run" for event in events - _ = inclusive_jets(jet_reconstruct(event, R = radius, p = p, - strategy = strategy); ptmin = ptmin) + _ = inclusive_jets(jet_reconstruct(event, R = radius, + algorithm = algorithm, p = p, strategy = strategy); ptmin = ptmin) end end @@ -112,8 +108,8 @@ function julia_jet_process_avg_time(events::Vector{Vector{T}}; Threads.@threads for event_counter ∈ 1:n_events * repeats event_idx = mod1(event_counter, n_events) my_t = Threads.threadid() - inclusive_jets(jet_reconstruct(events[event_idx], R = radius, p = p, - strategy = strategy), ptmin = ptmin) + inclusive_jets(jet_reconstruct(events[event_idx], R = radius, + algorithm = algorithm, p = p, strategy = strategy), ptmin = ptmin) end t_stop = time_ns() dt_μs = convert(Float64, t_stop - t_start) * 1.e-3 @@ -158,9 +154,8 @@ function fastjet_jet_process_avg_time(input_file::AbstractString; input_file = hepmc3gunzip(input_file) end - # Set consistent algorithm and power - (p, algorithm) = JetReconstruction.get_algorithm_power_consistency(p = p, - algorithm = algorithm) + # Get consistent algorithm power + p = JetReconstruction.get_algorithm_power(p = p, algorithm = algorithm) # @warn "FastJet timing not implemented yet" fj_bin = joinpath(@__DIR__, "..", "fastjet", "build", "fastjet-finder") @@ -194,10 +189,6 @@ function python_jet_process_avg_time(backend::Backends.Code, if endswith(input_file, ".gz") input_file = hepmc3gunzip(input_file) end - - # Set consistent algorithm and power - (p, algorithm) = JetReconstruction.get_algorithm_power_consistency(p = p, - algorithm = algorithm) # There are some limitations in the Python code - only AntiKt is supported, # and the strategy has to be manually set @@ -351,8 +342,8 @@ function main() hepmc3_files_df[:, :mean_particles] .= -1 end - # Get consistent algorithm and power here, so that missing values are filled - (power, algorithm) = JetReconstruction.get_algorithm_power_consistency(p = args[:power], algorithm = args[:algorithm]) + # Get consistent algorithm power + power = JetReconstruction.get_algorithm_power(p = args[:power], algorithm = args[:algorithm]) event_timing = Float64[] n_samples = Int[] @@ -404,7 +395,7 @@ function main() # Decorate the DataFrame with the metadata of the runs hepmc3_files_df[:, :code] .= args[:code] hepmc3_files_df[:, :code_version] .= args[:code_version] - hepmc3_files_df[:, :algorithm] .= algorithm + hepmc3_files_df[:, :algorithm] .= args[:algorithm] hepmc3_files_df[:, :strategy] .= args[:strategy] hepmc3_files_df[:, :radius] .= args[:radius] hepmc3_files_df[:, :power] .= power