Replies: 1 comment
-
Some scenarios for a hypothetical
append new edges: (g
.nodes(genes_df, 'id')
.edges(known_pathways_df, 'src', 'dst')
.umap(edge_merge='concat', type_tag='umap', col_prefix='umap_')
.scale(1.0) # should be responsive
).plot() reuse edges by sticking with either just updating existing (what happens in multiedges, just pick first?) , and optionally adding missing (g
.nodes(entities_df, 'id')
.edges(known_correlations_df, 'src', 'dst')
.umap(scale=1.0, edge_merge='inner' | 'upsert', type_tag='umap', out_cols={'weight': 'score'}) use UMAP for 'clustering on some node columns' but preserve existing edges, or at most augmenting them (g
.nodes(entities_df, 'id')
.edges(some_relns_df, 'src', 'dst')
.umap(use_cols=['feat1', 'feat2'], use_edges=True, scale=1.0, edge_merge='skip' | 'inner')
) use UMAP for community detection, without repositioning (g
.nodes(entities_df, 'id')
.edges(some_relns_df, 'src', 'dst')
.umap(use_edges=True, scale=1.0, edge_merge='skip', position=False)
.dbscan(use_cols=['x', 'y'], out_cols={'label': 'community', 'weight': 'community_distance'})
) |
Beta Was this translation helpful? Give feedback.
0 replies
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Uh oh!
There was an error while loading. Please reload this page.
-
pygraphistry/graphistry/feature_utils.py
Line 1322 in 0f610e9
Beta Was this translation helpful? Give feedback.
All reactions