|
| 1 | +use graph::prelude::CheapClone; |
| 2 | +use once_cell::sync::OnceCell; |
| 3 | +use stable_hash::crypto::SetHasher; |
| 4 | +use stable_hash::prelude::*; |
| 5 | +use std::collections::hash_map::Entry; |
| 6 | +use std::collections::{HashMap, VecDeque}; |
| 7 | +use std::ops::Deref; |
| 8 | +use std::sync::{Arc, Condvar, Mutex, Weak}; |
| 9 | + |
| 10 | +type Hash = <SetHasher as StableHasher>::Out; |
| 11 | + |
| 12 | +/// A queue of items which (may) have expired from the cache. |
| 13 | +/// This is kept separate to avoid circular references. The way |
| 14 | +/// the code is implemented ensure that this does not grow without |
| 15 | +/// bound, and generally cleanup stays ahead of insertion. |
| 16 | +#[derive(Default, Clone, Debug)] |
| 17 | +struct CleanupQueue { |
| 18 | + inner: Arc<Mutex<VecDeque<Hash>>>, |
| 19 | +} |
| 20 | + |
| 21 | +impl CleanupQueue { |
| 22 | + /// Schedule an item for cleanup later |
| 23 | + fn push(&self, value: Hash) { |
| 24 | + let mut inner = self.inner.lock().unwrap(); |
| 25 | + inner.push_back(value); |
| 26 | + } |
| 27 | + /// Take an item to clean up. The consumer MUST |
| 28 | + /// deal with this without fail or memory will leak. |
| 29 | + fn pop(&self) -> Option<Hash> { |
| 30 | + let mut inner = self.inner.lock().unwrap(); |
| 31 | + inner.pop_front() |
| 32 | + } |
| 33 | +} |
| 34 | + |
| 35 | +// Implemented on top of Arc, so this is ok. |
| 36 | +impl CheapClone for CleanupQueue {} |
| 37 | + |
| 38 | +/// A handle to a cached item. As long as this handle is kept alive, |
| 39 | +/// the value remains in the cache. |
| 40 | +/// |
| 41 | +/// The cached value may not be immediately available when used. |
| 42 | +/// In this case this will block until the value is available. |
| 43 | +#[derive(Debug)] |
| 44 | +pub struct CachedResponse<R> { |
| 45 | + inner: Arc<CacheEntryInner<R>>, |
| 46 | +} |
| 47 | + |
| 48 | +impl<R> Deref for CachedResponse<R> { |
| 49 | + type Target = R; |
| 50 | + fn deref(&self) -> &R { |
| 51 | + self.inner.wait() |
| 52 | + } |
| 53 | +} |
| 54 | + |
| 55 | +// Manual impl required because of generic parameter. |
| 56 | +impl<R> Clone for CachedResponse<R> { |
| 57 | + fn clone(&self) -> Self { |
| 58 | + Self { |
| 59 | + inner: self.inner.clone(), |
| 60 | + } |
| 61 | + } |
| 62 | +} |
| 63 | + |
| 64 | +// Ok, because implemented on top of Arc |
| 65 | +impl<R> CheapClone for CachedResponse<R> {} |
| 66 | + |
| 67 | +/// The 'true' cache entry that lives inside the Arc. |
| 68 | +/// When the last Arc is dropped, this is dropped, |
| 69 | +/// and the cache is removed. |
| 70 | +#[derive(Debug)] |
| 71 | +struct CacheEntryInner<R> { |
| 72 | + cleanup: CleanupQueue, |
| 73 | + hash: Hash, |
| 74 | + // Considered using once_cell::sync::Lazy, |
| 75 | + // but that quickly becomes a mess of generics |
| 76 | + // or runs into the issue that Box<dyn FnOnce> can't be |
| 77 | + // called at all, so doesn't impl FnOnce as Lazy requires. |
| 78 | + result: OnceCell<Option<R>>, |
| 79 | + |
| 80 | + // Temporary to implement OnceCell.wait |
| 81 | + condvar: Condvar, |
| 82 | + lock: Mutex<bool>, |
| 83 | +} |
| 84 | + |
| 85 | +impl<R> CacheEntryInner<R> { |
| 86 | + fn new(hash: Hash, cleanup: &CleanupQueue) -> Arc<Self> { |
| 87 | + Arc::new(Self { |
| 88 | + cleanup: cleanup.cheap_clone(), |
| 89 | + hash, |
| 90 | + result: OnceCell::new(), |
| 91 | + condvar: Condvar::new(), |
| 92 | + lock: Mutex::new(false), |
| 93 | + }) |
| 94 | + } |
| 95 | + |
| 96 | + fn set_inner(&self, value: Option<R>) { |
| 97 | + // Store the cached value |
| 98 | + self.result |
| 99 | + .set(value) |
| 100 | + .unwrap_or_else(|_| panic!("Cache set should only be called once")); |
| 101 | + // Wakeup consumers of the cache |
| 102 | + let mut is_set = self.lock.lock().unwrap(); |
| 103 | + *is_set = true; |
| 104 | + self.condvar.notify_all(); |
| 105 | + } |
| 106 | + |
| 107 | + fn set(&self, value: R) { |
| 108 | + self.set_inner(Some(value)); |
| 109 | + } |
| 110 | + |
| 111 | + fn set_panic(&self) { |
| 112 | + self.set_inner(None); |
| 113 | + } |
| 114 | + |
| 115 | + fn wait(&self) -> &R { |
| 116 | + // Happy path - already cached. |
| 117 | + if let Some(r) = self.result.get() { |
| 118 | + match r.as_ref() { |
| 119 | + Some(r) => r, |
| 120 | + // TODO: Instead of having an Option, |
| 121 | + // retain panic information and propagate it. |
| 122 | + None => panic!("Query panicked"), |
| 123 | + } |
| 124 | + } else { |
| 125 | + // Wait for the item to be placed in the cache. |
| 126 | + let mut is_set = self.lock.lock().unwrap(); |
| 127 | + while !*is_set { |
| 128 | + is_set = self.condvar.wait(is_set).unwrap(); |
| 129 | + } |
| 130 | + |
| 131 | + self.wait() |
| 132 | + } |
| 133 | + } |
| 134 | +} |
| 135 | + |
| 136 | +/// Once the last reference is removed, schedule for cleanup in the cache. |
| 137 | +impl<R> Drop for CacheEntryInner<R> { |
| 138 | + fn drop(&mut self) { |
| 139 | + self.cleanup.push(self.hash); |
| 140 | + } |
| 141 | +} |
| 142 | + |
| 143 | +/// On drop, call set_panic on self.value, |
| 144 | +/// unless set was called. |
| 145 | +struct PanicHelper<R> { |
| 146 | + value: Option<Arc<CacheEntryInner<R>>>, |
| 147 | +} |
| 148 | + |
| 149 | +impl<R> Drop for PanicHelper<R> { |
| 150 | + fn drop(&mut self) { |
| 151 | + if let Some(inner) = self.value.take() { |
| 152 | + inner.set_panic(); |
| 153 | + } |
| 154 | + } |
| 155 | +} |
| 156 | + |
| 157 | +impl<R> PanicHelper<R> { |
| 158 | + fn new(value: Arc<CacheEntryInner<R>>) -> Self { |
| 159 | + Self { value: Some(value) } |
| 160 | + } |
| 161 | + fn set(mut self, r: R) -> Arc<CacheEntryInner<R>> { |
| 162 | + let value = self.value.take().unwrap(); |
| 163 | + value.set(r); |
| 164 | + value |
| 165 | + } |
| 166 | +} |
| 167 | + |
| 168 | +/// Cache that keeps a result around as long as it is still in use somewhere. |
| 169 | +/// The cache ensures that the query is not re-entrant, so multiple consumers |
| 170 | +/// of identical queries will not execute them in parallel. |
| 171 | +/// |
| 172 | +/// This has a lot in common with AsyncCache in the network-services repo, |
| 173 | +/// but is sync instead of async, and more specialized. |
| 174 | +pub struct QueryCache<R> { |
| 175 | + cleanup: CleanupQueue, |
| 176 | + cache: Arc<Mutex<HashMap<Hash, Weak<CacheEntryInner<R>>>>>, |
| 177 | +} |
| 178 | + |
| 179 | +impl<R> QueryCache<R> { |
| 180 | + pub fn new() -> Self { |
| 181 | + Self { |
| 182 | + cleanup: CleanupQueue::default(), |
| 183 | + cache: Arc::new(Mutex::new(HashMap::new())), |
| 184 | + } |
| 185 | + } |
| 186 | + /// Assumption: Whatever F is passed in consistently returns the same |
| 187 | + /// value for any input - for all values of F used with this Cache. |
| 188 | + pub fn cached_query<F: FnOnce() -> R>(&self, hash: Hash, f: F) -> CachedResponse<R> { |
| 189 | + // This holds it's own lock so make sure that this happens outside of |
| 190 | + // holding any other lock. |
| 191 | + let cleanup = self.cleanup.pop(); |
| 192 | + |
| 193 | + let mut cache = self.cache.lock().unwrap(); |
| 194 | + |
| 195 | + // Execute the amortized cleanup step, checking that the content is |
| 196 | + // still missing since it may have been re-inserted. By always cleaning |
| 197 | + // up one item before potentially inserting another item we ensure that |
| 198 | + // the memory usage stays bounded. There is no need to stay ahead of |
| 199 | + // this work, because this step doesn't actually free any real memory, |
| 200 | + // it just ensures the memory doesn't grow unnecessarily when inserting. |
| 201 | + if let Some(cleanup) = cleanup { |
| 202 | + if let Entry::Occupied(entry) = cache.entry(cleanup) { |
| 203 | + if entry.get().strong_count() == 0 { |
| 204 | + entry.remove_entry(); |
| 205 | + } |
| 206 | + } |
| 207 | + } |
| 208 | + |
| 209 | + // Try to pull the item out of the cache and return it. |
| 210 | + // If we get past this expr, it means this thread will do |
| 211 | + // the work and fullfil that 'promise' in this work variable. |
| 212 | + let work = match cache.entry(hash) { |
| 213 | + Entry::Occupied(mut entry) => { |
| 214 | + // Cache hit! |
| 215 | + if let Some(cached) = entry.get().upgrade() { |
| 216 | + return CachedResponse { inner: cached }; |
| 217 | + } |
| 218 | + // Need to re-add to cache |
| 219 | + let uncached = CacheEntryInner::new(hash, &self.cleanup); |
| 220 | + *entry.get_mut() = Arc::downgrade(&uncached); |
| 221 | + uncached |
| 222 | + } |
| 223 | + Entry::Vacant(entry) => { |
| 224 | + let uncached = CacheEntryInner::new(hash, &self.cleanup); |
| 225 | + entry.insert(Arc::downgrade(&uncached)); |
| 226 | + uncached |
| 227 | + } |
| 228 | + }; |
| 229 | + |
| 230 | + // Don't hold the lock. |
| 231 | + drop(cache); |
| 232 | + |
| 233 | + // Now that we have taken on the responsibility, propagate panics to |
| 234 | + // make sure that no threads wait forever on a result that will never |
| 235 | + // come. |
| 236 | + let work = PanicHelper::new(work); |
| 237 | + |
| 238 | + // After all that ceremony, this part is easy enough. |
| 239 | + CachedResponse { |
| 240 | + inner: work.set(f()), |
| 241 | + } |
| 242 | + } |
| 243 | +} |
0 commit comments