Skip to content

[BUG] Segmentation fault with hierarchical_leiden #1099

@Nithanaroy

Description

@Nithanaroy

Expected Behavior

graspologic.partition.leiden.hierarchical_leiden should return a list of nodes along with their cluster and level IDs

Actual Behavior

Fails with a segmentation fault

Example Code

Please see How to create a Minimal, Reproducible example for some guidance on creating the best possible example of the problem

import graspologic as gc
import networkx as nx
import pickle
import faulthandler

faulthandler.enable()

# construct my graph which I cannot unfortunately share

clusters = gc.partition.hierarchical_leiden(
    graph=G, max_cluster_size=986, random_seed=42
)

Full Traceback

Fatal Python error: Segmentation fault

Current thread 0x00007f6b0c2031c0 (most recent call first):
  File "<MY_PYTHON_BIN_PATH>/python3.10/site-packages/graspologic/partition/leiden.py", line 588 in hierarchical_leiden
  File "<@beartype(graspologic.partition.leiden.hierarchical_leiden) at 0x7f69ae76af80>", line 304 in hierarchical_leiden
  File "<MY_PROJECT_PATH>/test/leiden_test.py", line 13 in <module>

Extension modules: numpy.core._multiarray_umath, numpy.core._multiarray_tests, numpy.linalg._umath_linalg, numpy.fft._pocketfft_internal, numpy.random._common, numpy.random.bit_generator, numpy.random._bounded_integers, numpy.random._mt19937, numpy.random.mtrand, numpy.random._philox, numpy.random._pcg64, numpy.random._sfc64, numpy.random._generator, scipy._lib._ccallback_c, scipy.linalg._fblas, scipy.linalg._flapack, scipy.linalg.cython_lapack, scipy.linalg._cythonized_array_utils, scipy.linalg._solve_toeplitz, scipy.linalg._decomp_lu_cython, scipy.linalg._matfuncs_sqrtm_triu, scipy.linalg.cython_blas, scipy.linalg._matfuncs_expm, scipy.linalg._decomp_update, scipy.sparse._sparsetools, _csparsetools, scipy.sparse._csparsetools, scipy.sparse.linalg._dsolve._superlu, scipy.sparse.linalg._eigen.arpack._arpack, scipy.sparse.linalg._propack._spropack, scipy.sparse.linalg._propack._dpropack, scipy.sparse.linalg._propack._cpropack, scipy.sparse.linalg._propack._zpropack, scipy.sparse.csgraph._tools, scipy.sparse.csgraph._shortest_path, scipy.sparse.csgraph._traversal, scipy.sparse.csgraph._min_spanning_tree, scipy.sparse.csgraph._flow, scipy.sparse.csgraph._matching, scipy.sparse.csgraph._reordering, sklearn.__check_build._check_build, psutil._psutil_linux, psutil._psutil_posix, scipy.special._ufuncs_cxx, scipy.special._cdflib, scipy.special._ufuncs, scipy.special._specfun, scipy.special._comb, scipy.special._ellip_harm_2, scipy.spatial._ckdtree, scipy._lib.messagestream, scipy.spatial._qhull, scipy.spatial._voronoi, scipy.spatial._distance_wrap, scipy.spatial._hausdorff, scipy.spatial.transform._rotation, scipy.ndimage._nd_image, _ni_label, scipy.ndimage._ni_label, scipy.optimize._minpack2, scipy.optimize._group_columns, scipy.optimize._trlib._trlib, scipy.optimize._lbfgsb, _moduleTNC, scipy.optimize._moduleTNC, scipy.optimize._cobyla, scipy.optimize._slsqp, scipy.optimize._minpack, scipy.optimize._lsq.givens_elimination, scipy.optimize._zeros, scipy.optimize._highs.cython.src._highs_wrapper, scipy.optimize._highs._highs_wrapper, scipy.optimize._highs.cython.src._highs_constants, scipy.optimize._highs._highs_constants, scipy.linalg._interpolative, scipy.optimize._bglu_dense, scipy.optimize._lsap, scipy.optimize._direct, scipy.integrate._odepack, scipy.integrate._quadpack, scipy.integrate._vode, scipy.integrate._dop, scipy.integrate._lsoda, scipy.special.cython_special, scipy.stats._stats, scipy.stats.beta_ufunc, scipy.stats._boost.beta_ufunc, scipy.stats.binom_ufunc, scipy.stats._boost.binom_ufunc, scipy.stats.nbinom_ufunc, scipy.stats._boost.nbinom_ufunc, scipy.stats.hypergeom_ufunc, scipy.stats._boost.hypergeom_ufunc, scipy.stats.ncf_ufunc, scipy.stats._boost.ncf_ufunc, scipy.stats.ncx2_ufunc, scipy.stats._boost.ncx2_ufunc, scipy.stats.nct_ufunc, scipy.stats._boost.nct_ufunc, scipy.stats.skewnorm_ufunc, scipy.stats._boost.skewnorm_ufunc, scipy.stats.invgauss_ufunc, scipy.stats._boost.invgauss_ufunc, scipy.interpolate._fitpack, scipy.interpolate.dfitpack, scipy.interpolate._bspl, scipy.interpolate._ppoly, scipy.interpolate.interpnd, scipy.interpolate._rbfinterp_pythran, scipy.interpolate._rgi_cython, scipy.stats._biasedurn, scipy.stats._levy_stable.levyst, scipy.stats._stats_pythran, scipy._lib._uarray._uarray, scipy.stats._ansari_swilk_statistics, scipy.stats._sobol, scipy.stats._qmc_cy, scipy.stats._mvn, scipy.stats._rcont.rcont, scipy.stats._unuran.unuran_wrapper, pyarrow.lib, pyarrow._hdfsio, pandas._libs.tslibs.ccalendar, pandas._libs.tslibs.np_datetime, pandas._libs.tslibs.dtypes, pandas._libs.tslibs.base, pandas._libs.tslibs.nattype, pandas._libs.tslibs.timezones, pandas._libs.tslibs.fields, pandas._libs.tslibs.timedeltas, pandas._libs.tslibs.tzconversion, pandas._libs.tslibs.timestamps, pandas._libs.properties, pandas._libs.tslibs.offsets, pandas._libs.tslibs.strptime, pandas._libs.tslibs.parsing, pandas._libs.tslibs.conversion, pandas._libs.tslibs.period, pandas._libs.tslibs.vectorized, pandas._libs.ops_dispatch, pandas._libs.missing, pandas._libs.hashtable, pandas._libs.algos, pandas._libs.interval, pandas._libs.lib, pyarrow._compute, pandas._libs.ops, pandas._libs.hashing, pandas._libs.arrays, pandas._libs.tslib, pandas._libs.sparse, pandas._libs.internals, pandas._libs.indexing, pandas._libs.index, pandas._libs.writers, pandas._libs.join, pandas._libs.window.aggregations, pandas._libs.window.indexers, pandas._libs.reshape, pandas._libs.groupby, pandas._libs.json, pandas._libs.parsers, pandas._libs.testing, sklearn.utils._isfinite, sklearn.utils.sparsefuncs_fast, sklearn.utils.murmurhash, sklearn.utils._openmp_helpers, ot.lp.emd_wrap, sklearn.metrics.cluster._expected_mutual_info_fast, sklearn.preprocessing._csr_polynomial_expansion, sklearn.preprocessing._target_encoder_fast, sklearn.metrics._dist_metrics, sklearn.metrics._pairwise_distances_reduction._datasets_pair, sklearn.utils._cython_blas, sklearn.metrics._pairwise_distances_reduction._base, sklearn.metrics._pairwise_distances_reduction._middle_term_computer, sklearn.utils._heap, sklearn.utils._sorting, sklearn.metrics._pairwise_distances_reduction._argkmin, sklearn.metrics._pairwise_distances_reduction._argkmin_classmode, sklearn.utils._vector_sentinel, sklearn.metrics._pairwise_distances_reduction._radius_neighbors, sklearn.metrics._pairwise_distances_reduction._radius_neighbors_classmode, sklearn.metrics._pairwise_fast, sklearn.utils._fast_dict, sklearn.cluster._hierarchical_fast, sklearn.cluster._k_means_common, sklearn.cluster._k_means_elkan, sklearn.cluster._k_means_lloyd, sklearn.cluster._k_means_minibatch, sklearn.neighbors._partition_nodes, sklearn.neighbors._ball_tree, sklearn.neighbors._kd_tree, sklearn.utils.arrayfuncs, sklearn.utils._random, sklearn.utils._seq_dataset, sklearn.linear_model._cd_fast, _loss, sklearn._loss._loss, sklearn.svm._liblinear, sklearn.svm._libsvm, sklearn.svm._libsvm_sparse, sklearn.linear_model._sag_fast, sklearn.utils._weight_vector, sklearn.linear_model._sgd_fast, sklearn.decomposition._online_lda_fast, sklearn.decomposition._cdnmf_fast, sklearn.cluster._dbscan_inner, sklearn.cluster._hdbscan._tree, sklearn.cluster._hdbscan._linkage, sklearn.cluster._hdbscan._reachability, sklearn._isotonic, sklearn.tree._utils, sklearn.tree._tree, sklearn.tree._partitioner, sklearn.tree._splitter, sklearn.tree._criterion, sklearn.neighbors._quad_tree, sklearn.manifold._barnes_hut_tsne, sklearn.manifold._utils, _cffi_backend, simplejson._speedups, gensim._matutils, gensim.corpora._mmreader, gensim.models.word2vec_inner, gensim.models.word2vec_corpusfile, gensim.models.doc2vec_inner, gensim.models.doc2vec_corpusfile, gensim.models.fasttext_inner, gensim.models.fasttext_corpusfile, gensim.models.nmf_pgd, gensim.similarities.fastss, numba.core.typeconv._typeconv, numba._helperlib, numba._dynfunc, numba._dispatcher, numba.core.runtime._nrt_python, numba.np.ufunc._internal, numba.experimental.jitclass._box, sklearn.ensemble._gradient_boosting, sklearn.ensemble._hist_gradient_boosting.common, sklearn.ensemble._hist_gradient_boosting._gradient_boosting, sklearn.ensemble._hist_gradient_boosting._binning, sklearn.ensemble._hist_gradient_boosting._bitset, sklearn.ensemble._hist_gradient_boosting.histogram, sklearn.ensemble._hist_gradient_boosting._predictor, sklearn.ensemble._hist_gradient_boosting.splitting, scipy.signal._sigtools, scipy.signal._max_len_seq_inner, scipy.signal._upfirdn_apply, scipy.signal._spline, scipy.signal._sosfilt, scipy.signal._spectral, scipy.signal._peak_finding_utils, PIL._imaging, kiwisolver, scipy.cluster._vq, scipy.cluster._hierarchy, scipy.cluster._optimal_leaf_ordering (total: 259)
Segmentation fault

Your Environment

  • Python version: 3.10.14
  • graspologic version: 3.4.1

Additional Details

Any other contextual information you might feel is important.
Some statistics of the graph, G above

Number of nodes: 978
Number of edges: 20415
Average degree: 41.74846625766871
Average shortest path length: 2.167557294250376
Average clustering coefficient: 0.846603236827461
Graph density: 0.042731285831800116

Metadata

Metadata

Assignees

No one assigned

    Labels

    bugSomething isn't working

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions