Skip to content

Policy tree - double robust scores and rewards #149

@njawadekar

Description

@njawadekar

In layman's terms, can you please explain the process through which the policy_tree function inputs the double_robust_scores (i.e., the Gamma.matrix from causal forest that is interpreted as rewards), and uses them to generate the rules? Are positive values or negative values considered desirable in these reward matrices? I generally would think lower or negative treatment effects would be desirable, but I wasn't clear on how these rewards values are generated in a causal forest.

I am asking, because in my current project where I am using my causal forest's double robust scores for the policy tree, I am noticing that I am getting suboptimal results when evaluating the policy tree on the test subsample (as compared to the truth in that same test subsample). Therefore, I wanted to confirm that the policy tree actually seeks to reduce the incidence of a binary outcome, rather than increase it.

Metadata

Metadata

Assignees

No one assigned

    Labels

    questionFurther information is requested

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions