|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "metadata": {}, |
| 6 | + "source": [ |
| 7 | + "## Input Validation\n", |
| 8 | + "\n", |
| 9 | + "Guardrails supports validating inputs (prompts, instructions, msg_history) with string validators." |
| 10 | + ] |
| 11 | + }, |
| 12 | + { |
| 13 | + "cell_type": "markdown", |
| 14 | + "metadata": {}, |
| 15 | + "source": [ |
| 16 | + "In XML, specify the validators on the `prompt` or `instructions` tag, as such:" |
| 17 | + ] |
| 18 | + }, |
| 19 | + { |
| 20 | + "cell_type": "code", |
| 21 | + "execution_count": null, |
| 22 | + "metadata": { |
| 23 | + "is_executing": true |
| 24 | + }, |
| 25 | + "outputs": [], |
| 26 | + "source": [ |
| 27 | + "rail_spec = \"\"\"\n", |
| 28 | + "<rail version=\"0.1\">\n", |
| 29 | + "<prompt\n", |
| 30 | + " validators=\"two-words\"\n", |
| 31 | + " on-fail-two-words=\"exception\"\n", |
| 32 | + ">\n", |
| 33 | + "This is not two words\n", |
| 34 | + "</prompt>\n", |
| 35 | + "<output type=\"string\">\n", |
| 36 | + "</output>\n", |
| 37 | + "</rail>\n", |
| 38 | + "\"\"\"\n", |
| 39 | + "\n", |
| 40 | + "from guardrails import Guard\n", |
| 41 | + "guard = Guard.from_rail_string(rail_spec)" |
| 42 | + ] |
| 43 | + }, |
| 44 | + { |
| 45 | + "cell_type": "markdown", |
| 46 | + "metadata": {}, |
| 47 | + "source": [ |
| 48 | + "When `fix` is specified as the on-fail handler, the prompt will automatically be amended before calling the LLM.\n", |
| 49 | + "\n", |
| 50 | + "In any other case (for example, `exception`), a `ValidationException` will be returned in the outcome." |
| 51 | + ] |
| 52 | + }, |
| 53 | + { |
| 54 | + "cell_type": "code", |
| 55 | + "execution_count": null, |
| 56 | + "metadata": { |
| 57 | + "is_executing": true |
| 58 | + }, |
| 59 | + "outputs": [], |
| 60 | + "source": [ |
| 61 | + "import openai\n", |
| 62 | + "\n", |
| 63 | + "outcome = guard(\n", |
| 64 | + " openai.ChatCompletion.create,\n", |
| 65 | + ")\n", |
| 66 | + "outcome.error" |
| 67 | + ] |
| 68 | + }, |
| 69 | + { |
| 70 | + "cell_type": "markdown", |
| 71 | + "metadata": {}, |
| 72 | + "source": [ |
| 73 | + "When using pydantic to initialize a `Guard`, input validators can be specified by composition, as such:" |
| 74 | + ] |
| 75 | + }, |
| 76 | + { |
| 77 | + "cell_type": "code", |
| 78 | + "execution_count": null, |
| 79 | + "metadata": {}, |
| 80 | + "outputs": [], |
| 81 | + "source": [ |
| 82 | + "from guardrails.validators import TwoWords\n", |
| 83 | + "from pydantic import BaseModel\n", |
| 84 | + "\n", |
| 85 | + "\n", |
| 86 | + "class Pet(BaseModel):\n", |
| 87 | + " name: str\n", |
| 88 | + " age: int\n", |
| 89 | + "\n", |
| 90 | + "\n", |
| 91 | + "guard = Guard.from_pydantic(Pet)\n", |
| 92 | + "guard.with_prompt_validation([TwoWords(on_fail=\"exception\")])\n", |
| 93 | + "\n", |
| 94 | + "outcome = guard(\n", |
| 95 | + " openai.ChatCompletion.create,\n", |
| 96 | + " prompt=\"This is not two words\",\n", |
| 97 | + ")\n", |
| 98 | + "outcome.error" |
| 99 | + ] |
| 100 | + } |
| 101 | + ], |
| 102 | + "metadata": { |
| 103 | + "kernelspec": { |
| 104 | + "display_name": "Python 3 (ipykernel)", |
| 105 | + "language": "python", |
| 106 | + "name": "python3" |
| 107 | + }, |
| 108 | + "language_info": { |
| 109 | + "codemirror_mode": { |
| 110 | + "name": "ipython", |
| 111 | + "version": 3 |
| 112 | + }, |
| 113 | + "file_extension": ".py", |
| 114 | + "mimetype": "text/x-python", |
| 115 | + "name": "python", |
| 116 | + "nbconvert_exporter": "python", |
| 117 | + "pygments_lexer": "ipython3", |
| 118 | + "version": "3.11.0" |
| 119 | + } |
| 120 | + }, |
| 121 | + "nbformat": 4, |
| 122 | + "nbformat_minor": 1 |
| 123 | +} |
0 commit comments