Skip to content

Commit f4b6c1f

Browse files
authored
Update README.md
1 parent 3100778 commit f4b6c1f

File tree

1 file changed

+15
-15
lines changed

1 file changed

+15
-15
lines changed

README.md

Lines changed: 15 additions & 15 deletions
Original file line numberDiff line numberDiff line change
@@ -1,5 +1,5 @@
11
# o2plsda: Multiomics Data Integration
2-
# o2plsda [![Project Status:](http://www.repostatus.org/badges/latest/active.svg)](http://www.repostatus.org/#active) [![](https://img.shields.io/badge/devel%20version-0.0.19-green.svg)](https://github.com/guokai8/o2plsda) <a href="https://cran.r-project.org/web/packages/o2plsda/index.html"><img border="0" src="http://www.r-pkg.org/badges/version/o2plsda" alt="CRAN version"> ![Code Size:](https://img.shields.io/github/languages/code-size/guokai8/o2plsda)![](https://img.shields.io/badge/license-GPL--3-blue.svg)[![DOI](https://zenodo.org/badge/413478714.svg)](https://zenodo.org/badge/latestdoi/413478714)![](http://cranlogs.r-pkg.org/badges/grand-total/o2plsda?color=green)
2+
# o2plsda [![Project Status:](http://www.repostatus.org/badges/latest/active.svg)](http://www.repostatus.org/#active) [![](https://img.shields.io/badge/devel%20version-0.0.20-green.svg)](https://github.com/guokai8/o2plsda) <a href="https://cran.r-project.org/web/packages/o2plsda/index.html"><img border="0" src="http://www.r-pkg.org/badges/version/o2plsda" alt="CRAN version"> ![Code Size:](https://img.shields.io/github/languages/code-size/guokai8/o2plsda)![](https://img.shields.io/badge/license-GPL--3-blue.svg)[![DOI](https://zenodo.org/badge/413478714.svg)](https://zenodo.org/badge/latestdoi/413478714)![](http://cranlogs.r-pkg.org/badges/grand-total/o2plsda?color=green)
33

44

55
_o2plsda_ provides functions to do O2PLS-DA analysis for multiple omics integration.The algorithm came from "O2-PLS, a two-block (X±Y) latent variable regression (LVR) method with an integral OSC filter" which published by Johan Trygg and Svante Wold at 2003. O2PLS is a bidirectional multivariate regression method that aims to separate the covariance between two data sets (it was recently extended to multiple data sets) (Löfstedt and Trygg, 2011; Löfstedt et al., 2012) from the systematic sources of variance being specific for each data set separately.
@@ -48,38 +48,38 @@ set.seed(123)
4848
## ncores : parallel paramaters for large datasets
4949
cv <- o2cv(X,Y,1:5,1:3,1:3,group=group,nr_folds = 10)
5050
#####################################
51-
# The best paramaters are nc = 5 , nx = 2 , ny = 3
51+
The best parameters are nc = 5, nx = 3, ny = 3
5252
#####################################
53-
# The Qxy is 0.082 and the RMSE is: 2.030108
53+
The Qxy is 0.073901318688517 and the RMSE is: 2.02464376258545
5454
#####################################
5555
```
5656

57-
Then we can do the O2PLS analysis with nc = 5, nx = 2, ny =3. You can also select the best paramaters by looking at the cross validation results.
57+
Then we can do the O2PLS analysis with nc = 5, nx = 3, ny =3. You can also select the best paramaters by looking at the cross validation results.
5858
```{r}
5959
fit <- o2pls(X,Y,5,2,3)
6060
summary(fit)
6161
######### Summary of the O2PLS results #########
6262
### Call o2pls(X, Y, nc= 5 , nx= 2 , ny= 3 ) ###
6363
### Total variation
6464
### X: 4900 ; Y: 4900 ###
65-
### Total modeled variation ### X: 0.265 ; Y: 0.306 ###
65+
### Total modeled variation ### X: 0.261 ; Y: 0.314 ###
6666
### Joint, Orthogonal, Noise (proportions) ###
6767
X Y
68-
Joint 0.191 0.197
69-
Orthogonal 0.074 0.109
70-
Noise 0.735 0.694
71-
### Variation in X joint part predicted by Y Joint part: 0.924
72-
### Variation in Y joint part predicted by X Joint part: 0.926
68+
Joint 0.186 0.199
69+
Orthogonal 0.075 0.115
70+
Noise 0.739 0.686
71+
### Variation in X joint part predicted by Y Joint part: 0.901
72+
### Variation in Y joint part predicted by X Joint part: 0.902
7373
### Variation in each Latent Variable (LV) in Joint part:
7474
LV1 LV2 LV3 LV4 LV5
75-
X 0.040 0.039 0.041 0.037 0.035
76-
Y 0.049 0.045 0.035 0.037 0.032
75+
X 0.039 0.040 0.040 0.034 0.033
76+
Y 0.049 0.043 0.036 0.037 0.033
7777
### Variation in each Latent Variable (LV) in X Orthogonal part:
7878
LV1 LV2
79-
X 0.04 0.034
79+
X 0.04 0.036
8080
### Variation in each Latent Variable (LV) in Y Orthogonal part:
81-
LV1 LV2 LV3
82-
Y 0.045 0.034 0.03
81+
LV1 LV2 LV3
82+
Y 0.045 0.037 0.034
8383
8484
############################################
8585

0 commit comments

Comments
 (0)