|
1 | 1 | # o2plsda: Multiomics Data Integration |
2 | | -# o2plsda [](http://www.repostatus.org/#active) [](https://github.com/guokai8/o2plsda) <a href="https://cran.r-project.org/web/packages/o2plsda/index.html"><img border="0" src="http://www.r-pkg.org/badges/version/o2plsda" alt="CRAN version"> [](https://zenodo.org/badge/latestdoi/413478714) |
| 2 | +# o2plsda [](http://www.repostatus.org/#active) [](https://github.com/guokai8/o2plsda) <a href="https://cran.r-project.org/web/packages/o2plsda/index.html"><img border="0" src="http://www.r-pkg.org/badges/version/o2plsda" alt="CRAN version"> [](https://zenodo.org/badge/latestdoi/413478714) |
3 | 3 |
|
4 | 4 |
|
5 | 5 | _o2plsda_ provides functions to do O2PLS-DA analysis for multiple omics integration.The algorithm came from "O2-PLS, a two-block (X±Y) latent variable regression (LVR) method with an integral OSC filter" which published by Johan Trygg and Svante Wold at 2003. O2PLS is a bidirectional multivariate regression method that aims to separate the covariance between two data sets (it was recently extended to multiple data sets) (Löfstedt and Trygg, 2011; Löfstedt et al., 2012) from the systematic sources of variance being specific for each data set separately. |
@@ -48,38 +48,38 @@ set.seed(123) |
48 | 48 | ## ncores : parallel paramaters for large datasets |
49 | 49 | cv <- o2cv(X,Y,1:5,1:3,1:3,group=group,nr_folds = 10) |
50 | 50 | ##################################### |
51 | | -# The best paramaters are nc = 5 , nx = 2 , ny = 3 |
| 51 | +The best parameters are nc = 5, nx = 3, ny = 3 |
52 | 52 | ##################################### |
53 | | -# The Qxy is 0.082 and the RMSE is: 2.030108 |
| 53 | +The Qxy is 0.073901318688517 and the RMSE is: 2.02464376258545 |
54 | 54 | ##################################### |
55 | 55 | ``` |
56 | 56 |
|
57 | | -Then we can do the O2PLS analysis with nc = 5, nx = 2, ny =3. You can also select the best paramaters by looking at the cross validation results. |
| 57 | +Then we can do the O2PLS analysis with nc = 5, nx = 3, ny =3. You can also select the best paramaters by looking at the cross validation results. |
58 | 58 | ```{r} |
59 | 59 | fit <- o2pls(X,Y,5,2,3) |
60 | 60 | summary(fit) |
61 | 61 | ######### Summary of the O2PLS results ######### |
62 | 62 | ### Call o2pls(X, Y, nc= 5 , nx= 2 , ny= 3 ) ### |
63 | 63 | ### Total variation |
64 | 64 | ### X: 4900 ; Y: 4900 ### |
65 | | -### Total modeled variation ### X: 0.265 ; Y: 0.306 ### |
| 65 | +### Total modeled variation ### X: 0.261 ; Y: 0.314 ### |
66 | 66 | ### Joint, Orthogonal, Noise (proportions) ### |
67 | 67 | X Y |
68 | | -Joint 0.191 0.197 |
69 | | -Orthogonal 0.074 0.109 |
70 | | -Noise 0.735 0.694 |
71 | | -### Variation in X joint part predicted by Y Joint part: 0.924 |
72 | | -### Variation in Y joint part predicted by X Joint part: 0.926 |
| 68 | +Joint 0.186 0.199 |
| 69 | +Orthogonal 0.075 0.115 |
| 70 | +Noise 0.739 0.686 |
| 71 | +### Variation in X joint part predicted by Y Joint part: 0.901 |
| 72 | +### Variation in Y joint part predicted by X Joint part: 0.902 |
73 | 73 | ### Variation in each Latent Variable (LV) in Joint part: |
74 | 74 | LV1 LV2 LV3 LV4 LV5 |
75 | | -X 0.040 0.039 0.041 0.037 0.035 |
76 | | -Y 0.049 0.045 0.035 0.037 0.032 |
| 75 | +X 0.039 0.040 0.040 0.034 0.033 |
| 76 | +Y 0.049 0.043 0.036 0.037 0.033 |
77 | 77 | ### Variation in each Latent Variable (LV) in X Orthogonal part: |
78 | 78 | LV1 LV2 |
79 | | -X 0.04 0.034 |
| 79 | +X 0.04 0.036 |
80 | 80 | ### Variation in each Latent Variable (LV) in Y Orthogonal part: |
81 | | - LV1 LV2 LV3 |
82 | | -Y 0.045 0.034 0.03 |
| 81 | + LV1 LV2 LV3 |
| 82 | +Y 0.045 0.037 0.034 |
83 | 83 |
|
84 | 84 | ############################################ |
85 | 85 |
|
|
0 commit comments