Skip to content

Commit 304af2e

Browse files
authored
README: added links to articles (#246)
1 parent bfe2606 commit 304af2e

File tree

5 files changed

+24
-19
lines changed

5 files changed

+24
-19
lines changed

CHANGELOG.md

Lines changed: 4 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -1,5 +1,9 @@
11
# Changelog
22

3+
## 16.17.4
4+
- Documentation:
5+
- Added links to articles to README
6+
37
## 16.17.3
48
- Log Likelihood Cost function:
59
- `dtype` passed

README.md

Lines changed: 9 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -23,6 +23,8 @@ The library is a part of the ecosystem:
2323
- [KDTree-based data retrieval](#kdtree-based-data-retrieval)
2424
- [Models retraining](#models-retraining)
2525
- [Notes on gradient-based optimisation algorithms](#a-couple-of-words-about-linear-models-which-use-gradient-optimisation-methods)
26+
- [Helpful articles on algorithms standing behind the library](#helpful-articles-on-algorithms-standing-behind-the-library)
27+
- [Contacts](#contacts)
2628

2729

2830

@@ -851,6 +853,13 @@ final createClassifier = (DataFrame samples) =>
851853
);
852854
```
853855

856+
## Helpful articles on algorithms standing behind the library
857+
858+
- [Linear Regression in Dart](https://medium.com/mlearning-ai/a-gentle-introduction-to-linear-regression-the-dart-way-9750214e6fa2?source=friends_link&sk=e199d8f5b0bb71c97525be2ee7f5819b)
859+
- [Ordinary Least Squares (OLS) problem](https://medium.com/mlearning-ai/linear-regression-ordinary-least-squares-in-a-nutshell-c2e0d7ed260f?source=friends_link&sk=5c8bc0228d29bc67ebe524a91d687619)
860+
- [Closed-Form solution for OLS in Dart](https://medium.com/mlearning-ai/ordinary-least-squares-closed-form-solution-the-dart-way-d7c0ee0e0d02?source=friends_link&sk=9ba5a9da7fd3160b28c450ff6dc446a4)
861+
- [Gradient Descent in Dart](https://medium.com/mlearning-ai/gradient-descent-the-dart-way-2d6c39416a8a?source=friends_link&sk=992b52c85a51ecea1c1e9e4afe2a8c1e)
862+
854863
### Contacts
855864
If you have questions, feel free to text me on
856865
- [Twitter](https://twitter.com/ilgyrd)

example/logistic_regression.dart

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -9,7 +9,7 @@ void main() {
99
'Outcome',
1010
);
1111

12-
print('ACURACY:');
12+
print('ACСURACY:');
1313
print(model.assess(splits.last, MetricType.accuracy));
1414

1515
print('RECALL:');

example/main.dart

Lines changed: 9 additions & 17 deletions
Original file line numberDiff line numberDiff line change
@@ -1,23 +1,15 @@
11
import 'package:ml_algo/ml_algo.dart';
22
import 'package:ml_dataframe/ml_dataframe.dart';
33

4-
/// A simple usage example using synthetic data. To see more complex examples,
5-
/// please, visit other directories in this folder
64
Future<void> main() async {
7-
// Let's create a dataframe with fitting data, let's assume, that the target
8-
// column is the fifth column (column with index 4)
9-
final dataFrame = DataFrame(<Iterable<num>>[
10-
[2, 3, 4, 5, 4.3],
11-
[12, 32, 1, 3, 3.5],
12-
[27, 3, 0, 59, 2.1],
13-
], headerExists: false);
5+
final features = DataFrame([
6+
['feature_1', 'feature_2', 'output'],
7+
[2, 2, 12],
8+
[3, 3, 18],
9+
[4, 4, 24],
10+
[5, 5, 30],
11+
]);
12+
final model = LinearRegressor.SGD(features, 'output', fitIntercept: false);
1413

15-
// Let's create a regressor itself and train it
16-
final regressor = LinearRegressor(dataFrame, 'col_4',
17-
iterationsLimit: 100,
18-
initialLearningRate: 0.0005,
19-
learningRateType: LearningRateType.constant);
20-
21-
// Let's see adjusted coefficients
22-
print('Regression coefficients: ${regressor.coefficients}');
14+
print('Coefficients: ${model.coefficients}');
2315
}

pubspec.yaml

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1,6 +1,6 @@
11
name: ml_algo
22
description: Machine learning algorithms, Machine learning models performance evaluation functionality
3-
version: 16.17.3
3+
version: 16.17.4
44
homepage: https://github.com/gyrdym/ml_algo
55

66
environment:

0 commit comments

Comments
 (0)