@@ -17,27 +17,22 @@ The purpose of this example is to compare {adoc-math} and {adoctor-math}, and to
1717
1818### `adoc-math`
1919
20- We are about to discuss the <<cauchy-schwarz-ineq>>.
20+ We are about to discuss the famous <<cauchy-schwarz-ineq>>.
2121
2222*Theorem {counter:counter-thms} (Cauchy-Schwarz Inequality)* Let
23- // $n$ vertical_align_offset = -0.4ex
24- image:imgs/adoc-math/a_inline_amath_n_f5d15920.svg[]
23+ $n$ vertical_align_offset = -0.4ex
2524be a non-negative integer, and let
26- // $a_0, a_1, ... , a_n,$ vertical_align_offset = -0.7ex
27- image:imgs/adoc-math/a_inline_amath_a_0a_7458f93c.svg[]
28- // $b_0, b_1, ... , b_n in bbb "R"$
29- image:imgs/adoc-math/a_inline_amath_b_0b_986ceb00.svg[]
25+ $a_0, a_1, ... , a_n,$ vertical_align_offset = -0.7ex
26+ $b_0, b_1, ... , b_n in bbb "R"$
3027where
31- // $bbb "R"$
32- image:imgs/adoc-math/a_inline_amath_bbbR_34f68880.svg[]
28+ $bbb "R"$
3329is the set of real numbers. It follows that:
3430
3531[#cauchy-schwarz-ineq]
3632.Cauchy-Schwarz Inequality
37- // $$
38- // (a_0^2 + a_1^2 + ... + a_n^2)(b_0^2 + b_1^2 + ... + b_n^2) ≥ (a_0b_0 + a_1b_1 + ... + a_nb_n)^2
39- // $$
40- image::imgs/adoc-math/b_block_amath_(a_0_6354bc50.svg[align=center]
33+ $$
34+ (a_0^2 + a_1^2 + ... + a_n^2)(b_0^2 + b_1^2 + ... + b_n^2) ≥ (a_0b_0 + a_1b_1 + ... + a_nb_n)^2
35+ $$
4136
4237### `asciidoctor-mathematical`
4338
7166----
7267a|
7368[.text-center]
74- // $a/b$
75- image:imgs/adoc-math/a_inline_amath_ab_dd460eca.svg[]
69+ $a/b$
7670a|
7771* The default language is {amath} .
7872* Inline cells start with a `$` , and end with a `$` .
8579----
8680a|
8781[.text-center]
88- // $a/b$ amath
89- image:imgs/adoc-math/a_inline_amath_ab_bbcbf77a.svg[]
82+ $a/b$ amath
9083.2+a|
9184* Options come after the last `$` in inline cells.
9285* You can override the default language with
10699----
107100a|
108101[.text-center]
109- // $\dfrac{a}{b} $ tex
110- image:imgs/adoc-math/a_inline_tex_dfra_c0bb0f86.svg[]
102+ $\dfrac{a}{b} $ tex
111103
112104// Row
113105a|
117109----
118110a|
119111[.text-center]
120- // $a/b$ scale = 150%
121- image:imgs/adoc-math/a_inline_amath_ab_3888804f.svg[]
112+ $a/b$ scale = 150%
122113a|
123114* You can scale your math.
124115
130121----
131122a|
132123[.text-center]
133- // $a/b$ vertical_align_offset = 1ex
134- image:imgs/adoc-math/a_inline_amath_ab_db32d819.svg[]
124+ $a/b$ vertical_align_offset = 1ex
135125a|
136126* You can move your math up or down.
137127
@@ -144,10 +134,9 @@ sum_(i=1)^n i^3=((n(n+1))/2)^2
144134{empty} $$
145135----
146136a|
147- // $$ amath
148- // sum_(i=1)^n i^3=((n(n+1)) /2)^2
149- // $$
150- image::imgs/adoc-math/b_block_amath_sum__57ebec07.svg[align=center]
137+ $$ amath
138+ sum_(i=1)^n i^3=((n(n+1)) /2)^2
139+ $$
151140a|
152141* Block cells are written between lines of `$$` ; the options will be on the first line.
153142
@@ -160,10 +149,9 @@ a^2 + b^2 = c^2
160149{empty} $$
161150----
162151a|
163- // $$ amath, right
164- // a^2 + b^2 = c^2
165- // $$
166- image::imgs/adoc-math/b_block_amath_a2+b_c62fc84c.svg[align=right]
152+ $$ amath, right
153+ a^2 + b^2 = c^2
154+ $$
167155a|
168156* You can horizontally align block cells.
169157
182170{empty} $$
183171----
184172a|
185- // $$ amath, max_lines = 8
186- // 1 +
187- // 2 +
188- // 3 +
189- // 4 +
190- // 5 +
191- // 6 =
192- // 21
193- // $$
194- image::imgs/adoc-math/b_block_amath_1+2+_9f90f2f1.svg[align=center]
173+ $$ amath, max_lines = 8
174+ 1 +
175+ 2 +
176+ 3 +
177+ 4 +
178+ 5 +
179+ 6 =
180+ 21
181+ $$
195182a|
196183* If you forget to close a cell, it can be difficult to find the culprit. To prevent this, block cells have a `max_lines` parameter (by default 6). You can override this with `max_lines=X` .
197184
200187| sum_(i=1)^n i^3=((n(n+1)) /2)^2
201188a|
202189// $sum_(i=1)^n i^3=((n(n+1)) /2)^2$
203- |===
190+ |===
0 commit comments