|
| 1 | +# [875. Koko Eating Bananas](https://leetcode.com/problems/walking-robot-simulation/) |
| 2 | + |
| 3 | + |
| 4 | +## 题目 |
| 5 | + |
| 6 | +A robot on an infinite XY-plane starts at point `(0, 0)` and faces north. The robot can receive one of three possible types of `commands`: |
| 7 | + |
| 8 | +- `-2`: turn left `90` degrees, |
| 9 | +- `-1`: turn right `90` degrees, or |
| 10 | +- `1 <= k <= 9`: move forward `k` units. |
| 11 | + |
| 12 | +Some of the grid squares are `obstacles`. The `ith` obstacle is at grid point `obstacles[i] = (xi, yi)`. |
| 13 | + |
| 14 | +If the robot would try to move onto them, the robot stays on the previous grid square instead (but still continues following the rest of the route.) |
| 15 | + |
| 16 | +Return *the maximum Euclidean distance that the robot will be from the origin **squared** (i.e. if the distance is* `5`*, return* `25`*)*. |
| 17 | + |
| 18 | +**Note:** |
| 19 | + |
| 20 | +- North means +Y direction. |
| 21 | +- East means +X direction. |
| 22 | +- South means -Y direction. |
| 23 | +- West means -X direction. |
| 24 | + |
| 25 | + |
| 26 | + |
| 27 | +**Example 1:** |
| 28 | + |
| 29 | +``` |
| 30 | +Input: commands = [4,-1,3], obstacles = [] |
| 31 | +Output: 25 |
| 32 | +Explanation: The robot starts at (0, 0): |
| 33 | +1. Move north 4 units to (0, 4). |
| 34 | +2. Turn right. |
| 35 | +3. Move east 3 units to (3, 4). |
| 36 | +The furthest point away from the origin is (3, 4), which is 32 + 42 = 25 units away. |
| 37 | +``` |
| 38 | + |
| 39 | +**Example 2:** |
| 40 | + |
| 41 | +``` |
| 42 | +Input: commands = [4,-1,4,-2,4], obstacles = [[2,4]] |
| 43 | +Output: 65 |
| 44 | +Explanation: The robot starts at (0, 0): |
| 45 | +1. Move north 4 units to (0, 4). |
| 46 | +2. Turn right. |
| 47 | +3. Move east 1 unit and get blocked by the obstacle at (2, 4), robot is at (1, 4). |
| 48 | +4. Turn left. |
| 49 | +5. Move north 4 units to (1, 8). |
| 50 | +The furthest point away from the origin is (1, 8), which is 12 + 82 = 65 units away. |
| 51 | +``` |
| 52 | + |
| 53 | + |
| 54 | + |
| 55 | +**Constraints:** |
| 56 | + |
| 57 | +- `1 <= commands.length <= 104` |
| 58 | +- `commands[i]` is one of the values in the list `[-2,-1,1,2,3,4,5,6,7,8,9]`. |
| 59 | +- `0 <= obstacles.length <= 104` |
| 60 | +- `-3 * 104 <= xi, yi <= 3 * 104` |
| 61 | +- The answer is guaranteed to be less than `231`. |
| 62 | + |
| 63 | + |
| 64 | +## 题目大意 |
| 65 | + |
| 66 | + |
| 67 | +机器人在一个无限大小的 XY 网格平面上行走,从点 (0, 0) 处开始出发,面向北方。该机器人可以接收以下三种类型的命令 commands : |
| 68 | + |
| 69 | + |
| 70 | + -2 :向左转 90 度 |
| 71 | + -1 :向右转 90 度 |
| 72 | + 1 <= x <= 9 :向前移动 x 个单位长度 |
| 73 | + |
| 74 | + |
| 75 | + 在网格上有一些格子被视为障碍物 obstacles 。第 i 个障碍物位于网格点 obstacles[i] = (xi, yi) 。 |
| 76 | + |
| 77 | + 机器人无法走到障碍物上,它将会停留在障碍物的前一个网格方块上,但仍然可以继续尝试进行该路线的其余部分。 |
| 78 | + |
| 79 | + 返回从原点到机器人所有经过的路径点(坐标为整数)的最大欧式距离的平方。(即,如果距离为 5 ,则返回 25 ) |
| 80 | + |
| 81 | + 示例 1: |
| 82 | +输入:commands = [4,-1,3], obstacles = [] |
| 83 | +输出:25 |
| 84 | +解释: |
| 85 | +机器人开始位于 (0, 0): |
| 86 | +1. 向北移动 4 个单位,到达 (0, 4) |
| 87 | +2. 右转 |
| 88 | +3. 向东移动 3 个单位,到达 (3, 4) |
| 89 | +距离原点最远的是 (3, 4) ,距离为 32 + 42 = 25 |
| 90 | + |
| 91 | + 示例 2: |
| 92 | +输入:commands = [4,-1,4,-2,4], obstacles = [[2,4]] |
| 93 | +输出:65 |
| 94 | +解释:机器人开始位于 (0, 0): |
| 95 | +1. 向北移动 4 个单位,到达 (0, 4) |
| 96 | +2. 右转 |
| 97 | +3. 向东移动 1 个单位,然后被位于 (2, 4) 的障碍物阻挡,机器人停在 (1, 4) |
| 98 | +4. 左转 |
| 99 | +5. 向北走 4 个单位,到达 (1, 8) |
| 100 | +距离原点最远的是 (1, 8) ,距离为 12 + 82 = 65 |
| 101 | + |
| 102 | + |
| 103 | +提示: |
| 104 | + |
| 105 | +- `1 <= commands.length <= 104` |
| 106 | +- `commands[i]` is one of the values in the list `[-2,-1,1,2,3,4,5,6,7,8,9]`. |
| 107 | +- `0 <= obstacles.length <= 104` |
| 108 | +- `-3 * 104 <= xi, yi <= 3 * 104` |
| 109 | +- The answer is guaranteed to be less than `231`. |
| 110 | + |
| 111 | + |
| 112 | +## 解题思路 |
| 113 | + |
| 114 | +这个题的难点在于,怎么用编程语言去描述机器人的行为 |
| 115 | +可以用以下数据结构表达机器人的行为: |
| 116 | +```go |
| 117 | +direct:= 0 // direct表示机器人移动方向:0 1 2 3 4 (北东南西),默认朝北 |
| 118 | +x, y := 0, 0 // 表示当前机器人所在横纵坐标位置,默认为(0,0) |
| 119 | +directX := []int{0, 1, 0, -1} |
| 120 | +directY := []int{1, 0, -1, 0} |
| 121 | +// 组合directX directY和direct,表示机器人往某一个方向移动 |
| 122 | +nextX := x + directX[direct] |
| 123 | +nextY := y + directY[direct] |
| 124 | +其他代码按照题意翻译即可 |
0 commit comments