diff --git a/examples/chroma_generation.py b/examples/chroma_generation.py new file mode 100644 index 000000000000..a71e10ab9f27 --- /dev/null +++ b/examples/chroma_generation.py @@ -0,0 +1,85 @@ +""" +Example script for generating images with Chroma model +""" + +import torch +from diffusers import ChromaTransformer2DModel, ChromaPipeline, AutoencoderKL +from diffusers.schedulers import FlowMatchEulerDiscreteScheduler +from transformers import T5EncoderModel, T5TokenizerFast + +def generate_with_chroma(): + # Model paths + chroma_path = "lodestones/Chroma" # or local path to safetensors + vae_path = "black-forest-labs/FLUX.1-schnell" # Chroma uses Flux VAE + text_encoder_path = "google/t5-v1_1-xxl" # T5 XXL encoder + + device = "cuda" if torch.cuda.is_available() else "cpu" + dtype = torch.bfloat16 if torch.cuda.is_available() else torch.float32 + + print("Loading models...") + + # Load VAE from Flux + vae = AutoencoderKL.from_pretrained( + vae_path, + subfolder="vae", + torch_dtype=dtype + ).to(device) + + # Load T5 encoder + text_encoder = T5EncoderModel.from_pretrained( + text_encoder_path, + torch_dtype=dtype + ).to(device) + + tokenizer = T5TokenizerFast.from_pretrained(text_encoder_path) + + # Load Chroma transformer + # Option 1: From HuggingFace Hub (when available) + # transformer = ChromaTransformer2DModel.from_pretrained( + # chroma_path, + # torch_dtype=dtype + # ).to(device) + + # Option 2: From single file + transformer = ChromaTransformer2DModel.from_single_file( + "path/to/chroma-unlocked-v29.safetensors", + torch_dtype=dtype + ).to(device) + + # Create scheduler + scheduler = FlowMatchEulerDiscreteScheduler() + + # Create pipeline + pipe = ChromaPipeline( + vae=vae, + text_encoder=text_encoder, + tokenizer=tokenizer, + transformer=transformer, + scheduler=scheduler + ) + + # Enable optimizations + pipe.enable_model_cpu_offload() + pipe.vae.enable_slicing() + pipe.vae.enable_tiling() + + # Generate image + prompt = "A majestic lion made of galaxies and stardust, cosmic art style" + + print(f"Generating image with prompt: {prompt}") + + image = pipe( + prompt=prompt, + height=1024, + width=1024, + num_inference_steps=20, + guidance_scale=3.5, + generator=torch.Generator(device=device).manual_seed(42) + ).images[0] + + # Save image + image.save("chroma_output.png") + print("Image saved as chroma_output.png") + +if __name__ == "__main__": + generate_with_chroma() diff --git a/src/diffusers/__init__.py b/src/diffusers/__init__.py index 9ab973351c86..5e9bcb5f8ef1 100644 --- a/src/diffusers/__init__.py +++ b/src/diffusers/__init__.py @@ -159,6 +159,7 @@ "AutoencoderTiny", "AutoModel", "CacheMixin", + "ChromaTransformer2DModel", "CogVideoXTransformer3DModel", "CogView3PlusTransformer2DModel", "CogView4Transformer2DModel", @@ -351,6 +352,7 @@ "AuraFlowPipeline", "BlipDiffusionControlNetPipeline", "BlipDiffusionPipeline", + "ChromaPipeline", "CLIPImageProjection", "CogVideoXFunControlPipeline", "CogVideoXImageToVideoPipeline", @@ -764,6 +766,7 @@ AutoencoderTiny, AutoModel, CacheMixin, + ChromaTransformer2DModel, CogVideoXTransformer3DModel, CogView3PlusTransformer2DModel, CogView4Transformer2DModel, @@ -935,6 +938,7 @@ AudioLDM2UNet2DConditionModel, AudioLDMPipeline, AuraFlowPipeline, + ChromaPipeline, CLIPImageProjection, CogVideoXFunControlPipeline, CogVideoXImageToVideoPipeline, diff --git a/src/diffusers/loaders/single_file_model.py b/src/diffusers/loaders/single_file_model.py index 6919c4949d59..0972a7116f85 100644 --- a/src/diffusers/loaders/single_file_model.py +++ b/src/diffusers/loaders/single_file_model.py @@ -29,6 +29,7 @@ convert_animatediff_checkpoint_to_diffusers, convert_auraflow_transformer_checkpoint_to_diffusers, convert_autoencoder_dc_checkpoint_to_diffusers, + convert_chroma_transformer_checkpoint_to_diffusers, convert_controlnet_checkpoint, convert_flux_transformer_checkpoint_to_diffusers, convert_hidream_transformer_to_diffusers, @@ -138,6 +139,10 @@ "checkpoint_mapping_fn": convert_hidream_transformer_to_diffusers, "default_subfolder": "transformer", }, + "ChromaTransformer2DModel": { + "checkpoint_mapping_fn": convert_chroma_transformer_checkpoint_to_diffusers, + "default_subfolder": "transformer", + }, } diff --git a/src/diffusers/loaders/single_file_utils.py b/src/diffusers/loaders/single_file_utils.py index 542f38b6ece5..4a385176b7c9 100644 --- a/src/diffusers/loaders/single_file_utils.py +++ b/src/diffusers/loaders/single_file_utils.py @@ -3329,3 +3329,197 @@ def convert_hidream_transformer_to_diffusers(checkpoint, **kwargs): checkpoint[k.replace("model.diffusion_model.", "")] = checkpoint.pop(k) return checkpoint + + +# Add Ednaordinary's converter function +def convert_chroma_transformer_checkpoint_to_diffusers(checkpoint, **kwargs): + """ + Convert ChromaTransformer2DModel checkpoint to diffusers format. + This handles the conversion from original checkpoint format to the diffusers naming convention. + """ + converted_state_dict = {} + keys = list(checkpoint.keys()) + + # Handle model.diffusion_model prefix removal (common in many checkpoints) + for k in keys: + if "model.diffusion_model." in k: + checkpoint[k.replace("model.diffusion_model.", "")] = checkpoint.pop(k) + + # Handle distilled guidance layer conversion (similar to flux chroma variant) + variant = "chroma" if "distilled_guidance_layer.in_proj.weight" in checkpoint else "flux" + + for k in list(checkpoint.keys()): + if variant == "chroma" and "distilled_guidance_layer." in k: + new_key = k + if k.startswith("distilled_guidance_layer.norms"): + new_key = k.replace(".scale", ".weight") + elif k.startswith("distilled_guidance_layer.layer"): + new_key = k.replace("in_layer", "linear_1").replace("out_layer", "linear_2") + converted_state_dict[new_key] = checkpoint.pop(k) + + # Get number of layers from checkpoint + num_layers = 0 + num_single_layers = 0 + + if any("double_blocks." in k for k in checkpoint): + num_layers = list(set(int(k.split(".", 2)[1]) for k in checkpoint if "double_blocks." in k))[-1] + 1 + if any("single_blocks." in k for k in checkpoint): + num_single_layers = list(set(int(k.split(".", 2)[1]) for k in checkpoint if "single_blocks." in k))[-1] + 1 + + # Helper function to swap scale and shift for AdaLayerNorm + def swap_scale_shift(weight): + if weight.dim() == 1 and weight.size(0) % 2 == 0: + shift, scale = weight.chunk(2, dim=0) + new_weight = torch.cat([scale, shift], dim=0) + return new_weight + return weight + + # Convert time and text embeddings + if "time_in.in_layer.weight" in checkpoint: + converted_state_dict["time_text_embed.timestep_embedder.linear_1.weight"] = checkpoint.pop("time_in.in_layer.weight") + converted_state_dict["time_text_embed.timestep_embedder.linear_1.bias"] = checkpoint.pop("time_in.in_layer.bias") + converted_state_dict["time_text_embed.timestep_embedder.linear_2.weight"] = checkpoint.pop("time_in.out_layer.weight") + converted_state_dict["time_text_embed.timestep_embedder.linear_2.bias"] = checkpoint.pop("time_in.out_layer.bias") + + if "vector_in.in_layer.weight" in checkpoint: + converted_state_dict["time_text_embed.text_embedder.linear_1.weight"] = checkpoint.pop("vector_in.in_layer.weight") + converted_state_dict["time_text_embed.text_embedder.linear_1.bias"] = checkpoint.pop("vector_in.in_layer.bias") + converted_state_dict["time_text_embed.text_embedder.linear_2.weight"] = checkpoint.pop("vector_in.out_layer.weight") + converted_state_dict["time_text_embed.text_embedder.linear_2.bias"] = checkpoint.pop("vector_in.out_layer.bias") + + # Convert guidance embeddings if present + if "guidance_in.in_layer.weight" in checkpoint: + converted_state_dict["time_text_embed.guidance_embedder.linear_1.weight"] = checkpoint.pop("guidance_in.in_layer.weight") + converted_state_dict["time_text_embed.guidance_embedder.linear_1.bias"] = checkpoint.pop("guidance_in.in_layer.bias") + converted_state_dict["time_text_embed.guidance_embedder.linear_2.weight"] = checkpoint.pop("guidance_in.out_layer.weight") + converted_state_dict["time_text_embed.guidance_embedder.linear_2.bias"] = checkpoint.pop("guidance_in.out_layer.bias") + + # Convert context and x embedders + if "txt_in.weight" in checkpoint: + converted_state_dict["context_embedder.weight"] = checkpoint.pop("txt_in.weight") + converted_state_dict["context_embedder.bias"] = checkpoint.pop("txt_in.bias") + + if "img_in.weight" in checkpoint: + converted_state_dict["x_embedder.weight"] = checkpoint.pop("img_in.weight") + converted_state_dict["x_embedder.bias"] = checkpoint.pop("img_in.bias") + + # Convert double transformer blocks + for i in range(num_layers): + block_prefix = f"transformer_blocks.{i}." + + # Convert norms + if f"double_blocks.{i}.img_mod.lin.weight" in checkpoint: + converted_state_dict[f"{block_prefix}norm1.linear.weight"] = checkpoint.pop(f"double_blocks.{i}.img_mod.lin.weight") + converted_state_dict[f"{block_prefix}norm1.linear.bias"] = checkpoint.pop(f"double_blocks.{i}.img_mod.lin.bias") + + if f"double_blocks.{i}.txt_mod.lin.weight" in checkpoint: + converted_state_dict[f"{block_prefix}norm1_context.linear.weight"] = checkpoint.pop(f"double_blocks.{i}.txt_mod.lin.weight") + converted_state_dict[f"{block_prefix}norm1_context.linear.bias"] = checkpoint.pop(f"double_blocks.{i}.txt_mod.lin.bias") + + # Convert attention layers + if f"double_blocks.{i}.img_attn.qkv.weight" in checkpoint: + sample_q, sample_k, sample_v = torch.chunk(checkpoint.pop(f"double_blocks.{i}.img_attn.qkv.weight"), 3, dim=0) + sample_q_bias, sample_k_bias, sample_v_bias = torch.chunk(checkpoint.pop(f"double_blocks.{i}.img_attn.qkv.bias"), 3, dim=0) + + converted_state_dict[f"{block_prefix}attn.to_q.weight"] = sample_q + converted_state_dict[f"{block_prefix}attn.to_q.bias"] = sample_q_bias + converted_state_dict[f"{block_prefix}attn.to_k.weight"] = sample_k + converted_state_dict[f"{block_prefix}attn.to_k.bias"] = sample_k_bias + converted_state_dict[f"{block_prefix}attn.to_v.weight"] = sample_v + converted_state_dict[f"{block_prefix}attn.to_v.bias"] = sample_v_bias + + if f"double_blocks.{i}.txt_attn.qkv.weight" in checkpoint: + context_q, context_k, context_v = torch.chunk(checkpoint.pop(f"double_blocks.{i}.txt_attn.qkv.weight"), 3, dim=0) + context_q_bias, context_k_bias, context_v_bias = torch.chunk(checkpoint.pop(f"double_blocks.{i}.txt_attn.qkv.bias"), 3, dim=0) + + converted_state_dict[f"{block_prefix}attn.add_q_proj.weight"] = context_q + converted_state_dict[f"{block_prefix}attn.add_q_proj.bias"] = context_q_bias + converted_state_dict[f"{block_prefix}attn.add_k_proj.weight"] = context_k + converted_state_dict[f"{block_prefix}attn.add_k_proj.bias"] = context_k_bias + converted_state_dict[f"{block_prefix}attn.add_v_proj.weight"] = context_v + converted_state_dict[f"{block_prefix}attn.add_v_proj.bias"] = context_v_bias + + # Convert QK norms + if f"double_blocks.{i}.img_attn.norm.query_norm.scale" in checkpoint: + converted_state_dict[f"{block_prefix}attn.norm_q.weight"] = checkpoint.pop(f"double_blocks.{i}.img_attn.norm.query_norm.scale") + converted_state_dict[f"{block_prefix}attn.norm_k.weight"] = checkpoint.pop(f"double_blocks.{i}.img_attn.norm.key_norm.scale") + + if f"double_blocks.{i}.txt_attn.norm.query_norm.scale" in checkpoint: + converted_state_dict[f"{block_prefix}attn.norm_added_q.weight"] = checkpoint.pop(f"double_blocks.{i}.txt_attn.norm.query_norm.scale") + converted_state_dict[f"{block_prefix}attn.norm_added_k.weight"] = checkpoint.pop(f"double_blocks.{i}.txt_attn.norm.key_norm.scale") + + # Convert output projections + if f"double_blocks.{i}.img_attn.proj.weight" in checkpoint: + converted_state_dict[f"{block_prefix}attn.to_out.0.weight"] = checkpoint.pop(f"double_blocks.{i}.img_attn.proj.weight") + converted_state_dict[f"{block_prefix}attn.to_out.0.bias"] = checkpoint.pop(f"double_blocks.{i}.img_attn.proj.bias") + + if f"double_blocks.{i}.txt_attn.proj.weight" in checkpoint: + converted_state_dict[f"{block_prefix}attn.to_add_out.weight"] = checkpoint.pop(f"double_blocks.{i}.txt_attn.proj.weight") + converted_state_dict[f"{block_prefix}attn.to_add_out.bias"] = checkpoint.pop(f"double_blocks.{i}.txt_attn.proj.bias") + + # Convert MLPs + if f"double_blocks.{i}.img_mlp.0.weight" in checkpoint: + converted_state_dict[f"{block_prefix}ff.net.0.proj.weight"] = checkpoint.pop(f"double_blocks.{i}.img_mlp.0.weight") + converted_state_dict[f"{block_prefix}ff.net.0.proj.bias"] = checkpoint.pop(f"double_blocks.{i}.img_mlp.0.bias") + converted_state_dict[f"{block_prefix}ff.net.2.weight"] = checkpoint.pop(f"double_blocks.{i}.img_mlp.2.weight") + converted_state_dict[f"{block_prefix}ff.net.2.bias"] = checkpoint.pop(f"double_blocks.{i}.img_mlp.2.bias") + + if f"double_blocks.{i}.txt_mlp.0.weight" in checkpoint: + converted_state_dict[f"{block_prefix}ff_context.net.0.proj.weight"] = checkpoint.pop(f"double_blocks.{i}.txt_mlp.0.weight") + converted_state_dict[f"{block_prefix}ff_context.net.0.proj.bias"] = checkpoint.pop(f"double_blocks.{i}.txt_mlp.0.bias") + converted_state_dict[f"{block_prefix}ff_context.net.2.weight"] = checkpoint.pop(f"double_blocks.{i}.txt_mlp.2.weight") + converted_state_dict[f"{block_prefix}ff_context.net.2.bias"] = checkpoint.pop(f"double_blocks.{i}.txt_mlp.2.bias") + + # Convert single transformer blocks + for i in range(num_single_layers): + block_prefix = f"single_transformer_blocks.{i}." + + # Convert norms + if f"single_blocks.{i}.modulation.lin.weight" in checkpoint: + converted_state_dict[f"{block_prefix}norm.linear.weight"] = checkpoint.pop(f"single_blocks.{i}.modulation.lin.weight") + converted_state_dict[f"{block_prefix}norm.linear.bias"] = checkpoint.pop(f"single_blocks.{i}.modulation.lin.bias") + + # Convert combined QKV and MLP + if f"single_blocks.{i}.linear1.weight" in checkpoint: + inner_dim = 3072 + mlp_ratio = 4.0 + mlp_hidden_dim = int(inner_dim * mlp_ratio) + split_size = (inner_dim, inner_dim, inner_dim, mlp_hidden_dim) + + q, k, v, mlp = torch.split(checkpoint.pop(f"single_blocks.{i}.linear1.weight"), split_size, dim=0) + q_bias, k_bias, v_bias, mlp_bias = torch.split(checkpoint.pop(f"single_blocks.{i}.linear1.bias"), split_size, dim=0) + + converted_state_dict[f"{block_prefix}attn.to_q.weight"] = q + converted_state_dict[f"{block_prefix}attn.to_q.bias"] = q_bias + converted_state_dict[f"{block_prefix}attn.to_k.weight"] = k + converted_state_dict[f"{block_prefix}attn.to_k.bias"] = k_bias + converted_state_dict[f"{block_prefix}attn.to_v.weight"] = v + converted_state_dict[f"{block_prefix}attn.to_v.bias"] = v_bias + converted_state_dict[f"{block_prefix}proj_mlp.weight"] = mlp + converted_state_dict[f"{block_prefix}proj_mlp.bias"] = mlp_bias + + # Convert QK norms + if f"single_blocks.{i}.norm.query_norm.scale" in checkpoint: + converted_state_dict[f"{block_prefix}attn.norm_q.weight"] = checkpoint.pop(f"single_blocks.{i}.norm.query_norm.scale") + converted_state_dict[f"{block_prefix}attn.norm_k.weight"] = checkpoint.pop(f"single_blocks.{i}.norm.key_norm.scale") + + # Convert output projection + if f"single_blocks.{i}.linear2.weight" in checkpoint: + converted_state_dict[f"{block_prefix}proj_out.weight"] = checkpoint.pop(f"single_blocks.{i}.linear2.weight") + converted_state_dict[f"{block_prefix}proj_out.bias"] = checkpoint.pop(f"single_blocks.{i}.linear2.bias") + + # Convert final layer + if "final_layer.linear.weight" in checkpoint: + converted_state_dict["proj_out.weight"] = checkpoint.pop("final_layer.linear.weight") + converted_state_dict["proj_out.bias"] = checkpoint.pop("final_layer.linear.bias") + + if "final_layer.adaLN_modulation.1.weight" in checkpoint: + converted_state_dict["norm_out.linear.weight"] = swap_scale_shift(checkpoint.pop("final_layer.adaLN_modulation.1.weight")) + converted_state_dict["norm_out.linear.bias"] = swap_scale_shift(checkpoint.pop("final_layer.adaLN_modulation.1.bias")) + + # Add any remaining keys from the original checkpoint + for key, value in checkpoint.items(): + if key not in converted_state_dict: + converted_state_dict[key] = value + + return converted_state_dict diff --git a/src/diffusers/models/__init__.py b/src/diffusers/models/__init__.py index 58322800332a..a5562ae787d5 100755 --- a/src/diffusers/models/__init__.py +++ b/src/diffusers/models/__init__.py @@ -74,6 +74,7 @@ _import_structure["transformers.t5_film_transformer"] = ["T5FilmDecoder"] _import_structure["transformers.transformer_2d"] = ["Transformer2DModel"] _import_structure["transformers.transformer_allegro"] = ["AllegroTransformer3DModel"] + _import_structure["transformers.transformer_chroma"] = ["ChromaTransformer2DModel"] _import_structure["transformers.transformer_cogview3plus"] = ["CogView3PlusTransformer2DModel"] _import_structure["transformers.transformer_cogview4"] = ["CogView4Transformer2DModel"] _import_structure["transformers.transformer_cosmos"] = ["CosmosTransformer3DModel"] @@ -150,6 +151,7 @@ from .transformers import ( AllegroTransformer3DModel, AuraFlowTransformer2DModel, + ChromaTransformer2DModel, CogVideoXTransformer3DModel, CogView3PlusTransformer2DModel, CogView4Transformer2DModel, diff --git a/src/diffusers/models/transformers/__init__.py b/src/diffusers/models/transformers/__init__.py index 86094104bd1c..0986e2be5c71 100755 --- a/src/diffusers/models/transformers/__init__.py +++ b/src/diffusers/models/transformers/__init__.py @@ -17,6 +17,7 @@ from .t5_film_transformer import T5FilmDecoder from .transformer_2d import Transformer2DModel from .transformer_allegro import AllegroTransformer3DModel + from .transformer_chroma import ChromaTransformer2DModel from .transformer_cogview3plus import CogView3PlusTransformer2DModel from .transformer_cogview4 import CogView4Transformer2DModel from .transformer_cosmos import CosmosTransformer3DModel diff --git a/src/diffusers/models/transformers/transformer_chroma.py b/src/diffusers/models/transformers/transformer_chroma.py new file mode 100644 index 000000000000..c53d9b96bc66 --- /dev/null +++ b/src/diffusers/models/transformers/transformer_chroma.py @@ -0,0 +1,615 @@ +# Copyright 2024 Black Forest Labs, The HuggingFace Team and The InstantX Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + + +from typing import Any, Dict, Optional, Tuple, Union + +import numpy as np +import torch +import torch.nn as nn + +from ...configuration_utils import ConfigMixin, register_to_config +from ...loaders import FluxTransformer2DLoadersMixin, FromOriginalModelMixin, PeftAdapterMixin +from ...utils import USE_PEFT_BACKEND, deprecate, logging, scale_lora_layers, unscale_lora_layers +from ...utils.import_utils import is_torch_npu_available +from ...utils.torch_utils import maybe_allow_in_graph +from ..attention import FeedForward +from ..attention_processor import ( + Attention, + AttentionProcessor, + FluxAttnProcessor2_0, + FluxAttnProcessor2_0_NPU, + FusedFluxAttnProcessor2_0, +) +from ..cache_utils import CacheMixin +from ..embeddings import ( + CombinedTimestepTextProjChromaEmbeddings, + ChromaApproximator, + FluxPosEmbed, +) +from ..modeling_outputs import Transformer2DModelOutput +from ..modeling_utils import ModelMixin +from ..normalization import ( + AdaLayerNormContinuousPruned, + AdaLayerNormZeroPruned, + AdaLayerNormZeroSinglePruned, +) + + +logger = logging.get_logger(__name__) # pylint: disable=invalid-name + + +@maybe_allow_in_graph +class ChromaSingleTransformerBlock(nn.Module): + def __init__( + self, + dim: int, + num_attention_heads: int, + attention_head_dim: int, + mlp_ratio: float = 4.0, + ): + super().__init__() + self.mlp_hidden_dim = int(dim * mlp_ratio) + + # Chroma uses pruned normalization + self.norm = AdaLayerNormZeroSinglePruned(dim) + + self.proj_mlp = nn.Linear(dim, self.mlp_hidden_dim) + self.act_mlp = nn.GELU(approximate="tanh") + self.proj_out = nn.Linear(dim + self.mlp_hidden_dim, dim) + + if is_torch_npu_available(): + deprecation_message = ( + "Defaulting to FluxAttnProcessor2_0_NPU for NPU devices will be removed. Attention processors " + "should be set explicitly using the `set_attn_processor` method." + ) + deprecate("npu_processor", "0.34.0", deprecation_message) + processor = FluxAttnProcessor2_0_NPU() + else: + processor = FluxAttnProcessor2_0() + + self.attn = Attention( + query_dim=dim, + cross_attention_dim=None, + dim_head=attention_head_dim, + heads=num_attention_heads, + out_dim=dim, + bias=True, + processor=processor, + qk_norm="rms_norm", + eps=1e-6, + pre_only=True, + ) + + def forward( + self, + hidden_states: torch.Tensor, + temb: torch.Tensor, + image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, + joint_attention_kwargs: Optional[Dict[str, Any]] = None, + ) -> torch.Tensor: + residual = hidden_states + norm_hidden_states, gate = self.norm(hidden_states, emb=temb) + mlp_hidden_states = self.act_mlp(self.proj_mlp(norm_hidden_states)) + joint_attention_kwargs = joint_attention_kwargs or {} + attn_output = self.attn( + hidden_states=norm_hidden_states, + image_rotary_emb=image_rotary_emb, + **joint_attention_kwargs, + ) + + hidden_states = torch.cat([attn_output, mlp_hidden_states], dim=2) + gate = gate.unsqueeze(1) + hidden_states = gate * self.proj_out(hidden_states) + hidden_states = residual + hidden_states + if hidden_states.dtype == torch.float16: + hidden_states = hidden_states.clip(-65504, 65504) + + return hidden_states + + +@maybe_allow_in_graph +class ChromaTransformerBlock(nn.Module): + def __init__( + self, + dim: int, + num_attention_heads: int, + attention_head_dim: int, + qk_norm: str = "rms_norm", + eps: float = 1e-6, + ): + super().__init__() + + # Chroma uses pruned normalization + self.norm1 = AdaLayerNormZeroPruned(dim) + self.norm1_context = AdaLayerNormZeroPruned(dim) + + self.attn = Attention( + query_dim=dim, + cross_attention_dim=None, + added_kv_proj_dim=dim, + dim_head=attention_head_dim, + heads=num_attention_heads, + out_dim=dim, + context_pre_only=False, + bias=True, + processor=FluxAttnProcessor2_0(), + qk_norm=qk_norm, + eps=eps, + ) + + self.norm2 = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6) + self.ff = FeedForward(dim=dim, dim_out=dim, activation_fn="gelu-approximate") + + self.norm2_context = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6) + self.ff_context = FeedForward(dim=dim, dim_out=dim, activation_fn="gelu-approximate") + + def forward( + self, + hidden_states: torch.Tensor, + encoder_hidden_states: torch.Tensor, + temb: torch.Tensor, + image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, + joint_attention_kwargs: Optional[Dict[str, Any]] = None, + ) -> Tuple[torch.Tensor, torch.Tensor]: + temb_img, temb_txt = temb[:, :6], temb[:, 6:] + norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(hidden_states, emb=temb_img) + + norm_encoder_hidden_states, c_gate_msa, c_shift_mlp, c_scale_mlp, c_gate_mlp = self.norm1_context( + encoder_hidden_states, emb=temb_txt + ) + joint_attention_kwargs = joint_attention_kwargs or {} + # Attention. + attention_outputs = self.attn( + hidden_states=norm_hidden_states, + encoder_hidden_states=norm_encoder_hidden_states, + image_rotary_emb=image_rotary_emb, + **joint_attention_kwargs, + ) + + if len(attention_outputs) == 2: + attn_output, context_attn_output = attention_outputs + elif len(attention_outputs) == 3: + attn_output, context_attn_output, ip_attn_output = attention_outputs + + # Process attention outputs for the `hidden_states`. + attn_output = gate_msa.unsqueeze(1) * attn_output + hidden_states = hidden_states + attn_output + + norm_hidden_states = self.norm2(hidden_states) + norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] + + ff_output = self.ff(norm_hidden_states) + ff_output = gate_mlp.unsqueeze(1) * ff_output + + hidden_states = hidden_states + ff_output + if len(attention_outputs) == 3: + hidden_states = hidden_states + ip_attn_output + + # Process attention outputs for the `encoder_hidden_states`. + + context_attn_output = c_gate_msa.unsqueeze(1) * context_attn_output + encoder_hidden_states = encoder_hidden_states + context_attn_output + + norm_encoder_hidden_states = self.norm2_context(encoder_hidden_states) + norm_encoder_hidden_states = norm_encoder_hidden_states * (1 + c_scale_mlp[:, None]) + c_shift_mlp[:, None] + + context_ff_output = self.ff_context(norm_encoder_hidden_states) + encoder_hidden_states = encoder_hidden_states + c_gate_mlp.unsqueeze(1) * context_ff_output + if encoder_hidden_states.dtype == torch.float16: + encoder_hidden_states = encoder_hidden_states.clip(-65504, 65504) + + return encoder_hidden_states, hidden_states + + +class ChromaTransformer2DModel( + ModelMixin, ConfigMixin, PeftAdapterMixin, FromOriginalModelMixin, FluxTransformer2DLoadersMixin, CacheMixin +): + """ + The Chroma Transformer model based on Flux architecture. + + This is a specialized version of FluxTransformer2DModel with Chroma-specific modifications: + - Uses CombinedTimestepTextProjChromaEmbeddings for time/text embeddings + - Uses ChromaApproximator for distilled guidance + - Uses pruned normalization layers (AdaLayerNormContinuousPruned, etc.) + - Modified forward pass logic for Chroma-specific conditioning + + Args: + patch_size (`int`, defaults to `1`): + Patch size to turn the input data into small patches. + in_channels (`int`, defaults to `64`): + The number of channels in the input. + out_channels (`int`, *optional*, defaults to `None`): + The number of channels in the output. If not specified, it defaults to `in_channels`. + num_layers (`int`, defaults to `19`): + The number of layers of dual stream DiT blocks to use. + num_single_layers (`int`, defaults to `38`): + The number of layers of single stream DiT blocks to use. + attention_head_dim (`int`, defaults to `128`): + The number of dimensions to use for each attention head. + num_attention_heads (`int`, defaults to `24`): + The number of attention heads to use. + joint_attention_dim (`int`, defaults to `4096`): + The number of dimensions to use for the joint attention (embedding/channel dimension of + `encoder_hidden_states`). + pooled_projection_dim (`int`, defaults to `768`): + The number of dimensions to use for the pooled projection. + axes_dims_rope (`Tuple[int]`, defaults to `(16, 56, 56)`): + The dimensions to use for the rotary positional embeddings. + approximator_in_factor (`int`, defaults to `16`): + Input factor for the Chroma approximator. + approximator_hidden_dim (`int`, defaults to `5120`): + Hidden dimension for the Chroma approximator. + approximator_layers (`int`, defaults to `5`): + Number of layers in the Chroma approximator. + """ + + _supports_gradient_checkpointing = True + _no_split_modules = ["ChromaTransformerBlock", "ChromaSingleTransformerBlock"] + _skip_layerwise_casting_patterns = ["pos_embed", "norm"] + + @register_to_config + def __init__( + self, + patch_size: int = 1, + in_channels: int = 64, + out_channels: Optional[int] = None, + num_layers: int = 19, + num_single_layers: int = 38, + attention_head_dim: int = 128, + num_attention_heads: int = 24, + joint_attention_dim: int = 4096, + pooled_projection_dim: int = 768, + axes_dims_rope: Tuple[int, ...] = (16, 56, 56), + approximator_in_factor: int = 16, + approximator_hidden_dim: int = 5120, + approximator_layers: int = 5, + ): + super().__init__() + self.out_channels = out_channels or in_channels + self.inner_dim = num_attention_heads * attention_head_dim + + self.pos_embed = FluxPosEmbed(theta=10000, axes_dim=axes_dims_rope) + + # Chroma-specific time/text embeddings + self.time_text_embed = CombinedTimestepTextProjChromaEmbeddings( + factor=approximator_in_factor, + hidden_dim=approximator_hidden_dim, + out_dim=3 * num_single_layers + 2 * 6 * num_layers + 2, + embedding_dim=self.inner_dim, + n_layers=approximator_layers, + ) + + # Chroma-specific distilled guidance layer + self.distilled_guidance_layer = ChromaApproximator( + in_dim=64, + out_dim=3072, + hidden_dim=5120, + n_layers=5 + ) + + self.context_embedder = nn.Linear(joint_attention_dim, self.inner_dim) + self.x_embedder = nn.Linear(in_channels, self.inner_dim) + + # Use Chroma-specific transformer blocks + self.transformer_blocks = nn.ModuleList( + [ + ChromaTransformerBlock( + dim=self.inner_dim, + num_attention_heads=num_attention_heads, + attention_head_dim=attention_head_dim, + ) + for _ in range(num_layers) + ] + ) + + self.single_transformer_blocks = nn.ModuleList( + [ + ChromaSingleTransformerBlock( + dim=self.inner_dim, + num_attention_heads=num_attention_heads, + attention_head_dim=attention_head_dim, + ) + for _ in range(num_single_layers) + ] + ) + + # Chroma uses pruned normalization for output + self.norm_out = AdaLayerNormContinuousPruned(self.inner_dim, self.inner_dim, elementwise_affine=False, eps=1e-6) + self.proj_out = nn.Linear(self.inner_dim, patch_size * patch_size * self.out_channels, bias=True) + + self.gradient_checkpointing = False + + @property + # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors + def attn_processors(self) -> Dict[str, AttentionProcessor]: + r""" + Returns: + `dict` of attention processors: A dictionary containing all attention processors used in the model with + indexed by its weight name. + """ + # set recursively + processors = {} + + def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]): + if hasattr(module, "get_processor"): + processors[f"{name}.processor"] = module.get_processor() + + for sub_name, child in module.named_children(): + fn_recursive_add_processors(f"{name}.{sub_name}", child, processors) + + return processors + + for name, module in self.named_children(): + fn_recursive_add_processors(name, module, processors) + + return processors + + # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor + def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]): + r""" + Sets the attention processor to use to compute attention. + + Parameters: + processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`): + The instantiated processor class or a dictionary of processor classes that will be set as the processor + for **all** `Attention` layers. + + If `processor` is a dict, the key needs to define the path to the corresponding cross attention + processor. This is strongly recommended when setting trainable attention processors. + + """ + count = len(self.attn_processors.keys()) + + if isinstance(processor, dict) and len(processor) != count: + raise ValueError( + f"A dict of processors was passed, but the number of processors {len(processor)} does not match the" + f" number of attention layers: {count}. Please make sure to pass {count} processor classes." + ) + + def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor): + if hasattr(module, "set_processor"): + if not isinstance(processor, dict): + module.set_processor(processor) + else: + module.set_processor(processor.pop(f"{name}.processor")) + + for sub_name, child in module.named_children(): + fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor) + + for name, module in self.named_children(): + fn_recursive_attn_processor(name, module, processor) + + # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.fuse_qkv_projections with FusedAttnProcessor2_0->FusedFluxAttnProcessor2_0 + def fuse_qkv_projections(self): + """ + Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query, key, value) + are fused. For cross-attention modules, key and value projection matrices are fused. + + + + This API is 🧪 experimental. + + + """ + self.original_attn_processors = None + + for _, attn_processor in self.attn_processors.items(): + if "Added" in str(attn_processor.__class__.__name__): + raise ValueError("`fuse_qkv_projections()` is not supported for models having added KV projections.") + + self.original_attn_processors = self.attn_processors + + for module in self.modules(): + if isinstance(module, Attention): + module.fuse_projections(fuse=True) + + self.set_attn_processor(FusedFluxAttnProcessor2_0()) + + # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.unfuse_qkv_projections + def unfuse_qkv_projections(self): + """Disables the fused QKV projection if enabled. + + + + This API is 🧪 experimental. + + + + """ + if self.original_attn_processors is not None: + self.set_attn_processor(self.original_attn_processors) + + def forward( + self, + hidden_states: torch.Tensor, + encoder_hidden_states: torch.Tensor = None, + pooled_projections: torch.Tensor = None, + timestep: torch.LongTensor = None, + img_ids: torch.Tensor = None, + txt_ids: torch.Tensor = None, + guidance: torch.Tensor = None, + joint_attention_kwargs: Optional[Dict[str, Any]] = None, + controlnet_block_samples=None, + controlnet_single_block_samples=None, + return_dict: bool = True, + controlnet_blocks_repeat: bool = False, + ) -> Union[torch.Tensor, Transformer2DModelOutput]: + """ + The [`ChromaTransformer2DModel`] forward method. + + Args: + hidden_states (`torch.Tensor` of shape `(batch_size, image_sequence_length, in_channels)`): + Input `hidden_states`. + encoder_hidden_states (`torch.Tensor` of shape `(batch_size, text_sequence_length, joint_attention_dim)`): + Conditional embeddings (embeddings computed from the input conditions such as prompts) to use. + pooled_projections (`torch.Tensor` of shape `(batch_size, projection_dim)`): Embeddings projected + from the embeddings of input conditions. + timestep ( `torch.LongTensor`): + Used to indicate denoising step. + block_controlnet_hidden_states: (`list` of `torch.Tensor`): + A list of tensors that if specified are added to the residuals of transformer blocks. + joint_attention_kwargs (`dict`, *optional*): + A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under + `self.processor` in + [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). + return_dict (`bool`, *optional*, defaults to `True`): + Whether or not to return a [`~models.transformer_2d.Transformer2DModelOutput`] instead of a plain + tuple. + + Returns: + If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a + `tuple` where the first element is the sample tensor. + """ + if joint_attention_kwargs is not None: + joint_attention_kwargs = joint_attention_kwargs.copy() + lora_scale = joint_attention_kwargs.pop("scale", 1.0) + else: + lora_scale = 1.0 + + if USE_PEFT_BACKEND: + # weight the lora layers by setting `lora_scale` for each PEFT layer + scale_lora_layers(self, lora_scale) + else: + if joint_attention_kwargs is not None and joint_attention_kwargs.get("scale", None) is not None: + logger.warning( + "Passing `scale` via `joint_attention_kwargs` when not using the PEFT backend is ineffective." + ) + + hidden_states = self.x_embedder(hidden_states) + + timestep = timestep.to(hidden_states.dtype) * 1000 + if guidance is not None: + guidance = guidance.to(hidden_states.dtype) * 1000 + + # Chroma-specific time/text embedding processing + input_vec = self.time_text_embed(timestep, guidance, pooled_projections) + pooled_temb = self.distilled_guidance_layer(input_vec) + + encoder_hidden_states = self.context_embedder(encoder_hidden_states) + + if txt_ids.ndim == 3: + logger.warning( + "Passing `txt_ids` 3d torch.Tensor is deprecated." + "Please remove the batch dimension and pass it as a 2d torch Tensor" + ) + txt_ids = txt_ids[0] + if img_ids.ndim == 3: + logger.warning( + "Passing `img_ids` 3d torch.Tensor is deprecated." + "Please remove the batch dimension and pass it as a 2d torch Tensor" + ) + img_ids = img_ids[0] + + ids = torch.cat((txt_ids, img_ids), dim=0) + image_rotary_emb = self.pos_embed(ids) + + if joint_attention_kwargs is not None and "ip_adapter_image_embeds" in joint_attention_kwargs: + ip_adapter_image_embeds = joint_attention_kwargs.pop("ip_adapter_image_embeds") + ip_hidden_states = self.encoder_hid_proj(ip_adapter_image_embeds) + joint_attention_kwargs.update({"ip_hidden_states": ip_hidden_states}) + + # Process through transformer blocks with Chroma-specific conditioning + for index_block, block in enumerate(self.transformer_blocks): + # Chroma-specific modulation calculation + img_offset = 3 * len(self.single_transformer_blocks) + txt_offset = img_offset + 6 * len(self.transformer_blocks) + img_modulation = img_offset + 6 * index_block + text_modulation = txt_offset + 6 * index_block + temb = torch.cat( + ( + pooled_temb[:, img_modulation : img_modulation + 6], + pooled_temb[:, text_modulation : text_modulation + 6], + ), + dim=1, + ) + + if torch.is_grad_enabled() and self.gradient_checkpointing: + encoder_hidden_states, hidden_states = self._gradient_checkpointing_func( + block, + hidden_states, + encoder_hidden_states, + temb, + image_rotary_emb, + ) + + else: + encoder_hidden_states, hidden_states = block( + hidden_states=hidden_states, + encoder_hidden_states=encoder_hidden_states, + temb=temb, + image_rotary_emb=image_rotary_emb, + joint_attention_kwargs=joint_attention_kwargs, + ) + + # controlnet residual + if controlnet_block_samples is not None: + interval_control = len(self.transformer_blocks) / len(controlnet_block_samples) + interval_control = int(np.ceil(interval_control)) + # For Xlabs ControlNet. + if controlnet_blocks_repeat: + hidden_states = ( + hidden_states + controlnet_block_samples[index_block % len(controlnet_block_samples)] + ) + else: + hidden_states = hidden_states + controlnet_block_samples[index_block // interval_control] + + hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1) + + # Process through single transformer blocks with Chroma-specific conditioning + for index_block, block in enumerate(self.single_transformer_blocks): + # Chroma-specific modulation for single blocks + start_idx = 3 * index_block + temb = pooled_temb[:, start_idx : start_idx + 3] + + if torch.is_grad_enabled() and self.gradient_checkpointing: + hidden_states = self._gradient_checkpointing_func( + block, + hidden_states, + temb, + image_rotary_emb, + ) + + else: + hidden_states = block( + hidden_states=hidden_states, + temb=temb, + image_rotary_emb=image_rotary_emb, + joint_attention_kwargs=joint_attention_kwargs, + ) + + # controlnet residual + if controlnet_single_block_samples is not None: + interval_control = len(self.single_transformer_blocks) / len(controlnet_single_block_samples) + interval_control = int(np.ceil(interval_control)) + hidden_states[:, encoder_hidden_states.shape[1] :, ...] = ( + hidden_states[:, encoder_hidden_states.shape[1] :, ...] + + controlnet_single_block_samples[index_block // interval_control] + ) + + hidden_states = hidden_states[:, encoder_hidden_states.shape[1] :, ...] + + # Chroma-specific output processing + temb = pooled_temb[:, -2:] + hidden_states = self.norm_out(hidden_states, temb) + output = self.proj_out(hidden_states) + + if USE_PEFT_BACKEND: + # remove `lora_scale` from each PEFT layer + unscale_lora_layers(self, lora_scale) + + if not return_dict: + return (output,) + + return Transformer2DModelOutput(sample=output) diff --git a/src/diffusers/pipelines/__init__.py b/src/diffusers/pipelines/__init__.py index 4debb868d9dc..7150166c7d9f 100644 --- a/src/diffusers/pipelines/__init__.py +++ b/src/diffusers/pipelines/__init__.py @@ -148,6 +148,7 @@ "AudioLDM2UNet2DConditionModel", ] _import_structure["blip_diffusion"] = ["BlipDiffusionPipeline"] + _import_structure["chroma"] = ["ChromaPipeline"] _import_structure["cogvideo"] = [ "CogVideoXPipeline", "CogVideoXImageToVideoPipeline", @@ -526,6 +527,7 @@ ) from .aura_flow import AuraFlowPipeline from .blip_diffusion import BlipDiffusionPipeline + from .chroma import ChromaPipeline from .cogvideo import ( CogVideoXFunControlPipeline, CogVideoXImageToVideoPipeline, diff --git a/src/diffusers/pipelines/chroma/__init__.py b/src/diffusers/pipelines/chroma/__init__.py new file mode 100644 index 000000000000..ebbc5aed7049 --- /dev/null +++ b/src/diffusers/pipelines/chroma/__init__.py @@ -0,0 +1,48 @@ +from typing import TYPE_CHECKING + +from ...utils import ( + DIFFUSERS_SLOW_IMPORT, + OptionalDependencyNotAvailable, + _LazyModule, + get_objects_from_module, + is_torch_available, + is_transformers_available, +) + + +_dummy_objects = {} +_additional_imports = {} +_import_structure = {} + +try: + if not (is_transformers_available() and is_torch_available()): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + from ...utils import dummy_torch_and_transformers_objects # noqa F403 + + _dummy_objects.update(get_objects_from_module(dummy_torch_and_transformers_objects)) +else: + _import_structure["pipeline_chroma"] = ["ChromaPipeline"] + +if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT: + try: + if not (is_transformers_available() and is_torch_available()): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 + else: + from .pipeline_chroma import ChromaPipeline +else: + import sys + + sys.modules[__name__] = _LazyModule( + __name__, + globals()["__file__"], + _import_structure, + module_spec=__spec__, + ) + + for name, value in _dummy_objects.items(): + setattr(sys.modules[__name__], name, value) + for name, value in _additional_imports.items(): + setattr(sys.modules[__name__], name, value) diff --git a/src/diffusers/pipelines/chroma/pipeline_chroma.py b/src/diffusers/pipelines/chroma/pipeline_chroma.py new file mode 100644 index 000000000000..fd6d6659de2e --- /dev/null +++ b/src/diffusers/pipelines/chroma/pipeline_chroma.py @@ -0,0 +1,769 @@ +# Copyright 2024 Black Forest Labs, The HuggingFace Team and The InstantX Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import inspect +from typing import Any, Callable, Dict, List, Optional, Union + +import numpy as np +import torch +from transformers import T5EncoderModel, T5TokenizerFast + +from ...image_processor import VaeImageProcessor +from ...loaders import FromSingleFileMixin, TextualInversionLoaderMixin +from ...models import AutoencoderKL +from ...models.transformers import ChromaTransformer2DModel +from ...schedulers import FlowMatchEulerDiscreteScheduler +from ...utils import ( + USE_PEFT_BACKEND, + is_torch_xla_available, + logging, + replace_example_docstring, + scale_lora_layers, + unscale_lora_layers, +) +from ...utils.torch_utils import randn_tensor +from ..pipeline_utils import DiffusionPipeline +from ..flux.pipeline_output import FluxPipelineOutput + + +if is_torch_xla_available(): + import torch_xla.core.xla_model as xm + + XLA_AVAILABLE = True +else: + XLA_AVAILABLE = False + + +logger = logging.get_logger(__name__) # pylint: disable=invalid-name + +EXAMPLE_DOC_STRING = """ + Examples: + ```py + >>> import torch + >>> from diffusers import ChromaPipeline + + >>> pipe = ChromaPipeline.from_pretrained("path/to/chroma", torch_dtype=torch.bfloat16) + >>> pipe.to("cuda") + >>> prompt = "A cat holding a sign that says hello world" + >>> image = pipe(prompt, num_inference_steps=4, guidance_scale=0.0).images[0] + >>> image.save("chroma.png") + ``` +""" + + +def calculate_shift( + image_seq_len, + base_seq_len: int = 256, + max_seq_len: int = 4096, + base_shift: float = 0.5, + max_shift: float = 1.15, +): + m = (max_shift - base_shift) / (max_seq_len - base_seq_len) + b = base_shift - m * base_seq_len + mu = image_seq_len * m + b + return mu + + +# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps +def retrieve_timesteps( + scheduler, + num_inference_steps: Optional[int] = None, + device: Optional[Union[str, torch.device]] = None, + timesteps: Optional[List[int]] = None, + sigmas: Optional[List[float]] = None, + **kwargs, +): + r""" + Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles + custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`. + + Args: + scheduler (`SchedulerMixin`): + The scheduler to get timesteps from. + num_inference_steps (`int`): + The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps` + must be `None`. + device (`str` or `torch.device`, *optional*): + The device to which the timesteps should be moved to. If `None`, the timesteps are not moved. + timesteps (`List[int]`, *optional*): + Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed, + `num_inference_steps` and `sigmas` must be `None`. + sigmas (`List[float]`, *optional*): + Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed, + `num_inference_steps` and `timesteps` must be `None`. + + Returns: + `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the + second element is the number of inference steps. + """ + if timesteps is not None and sigmas is not None: + raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values") + if timesteps is not None: + accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) + if not accepts_timesteps: + raise ValueError( + f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" + f" timestep schedules. Please check whether you are using the correct scheduler." + ) + scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs) + timesteps = scheduler.timesteps + num_inference_steps = len(timesteps) + elif sigmas is not None: + accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) + if not accept_sigmas: + raise ValueError( + f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" + f" sigmas schedules. Please check whether you are using the correct scheduler." + ) + scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs) + timesteps = scheduler.timesteps + num_inference_steps = len(timesteps) + else: + scheduler.set_timesteps(num_inference_steps, device=device, **kwargs) + timesteps = scheduler.timesteps + return timesteps, num_inference_steps + + +class ChromaPipeline( + DiffusionPipeline, + FromSingleFileMixin, + TextualInversionLoaderMixin, +): + r""" + The Chroma pipeline for text-to-image generation. + + This pipeline is based on Flux but with Chroma-specific modifications: + - Uses only T5 encoder (no CLIP encoder) + - Removes pooled projections logic + - Implements proper attention masking for T5 encoder + - Uses ChromaTransformer2DModel with distilled guidance + + Args: + transformer ([`ChromaTransformer2DModel`]): + Conditional Transformer (MMDiT) architecture to denoise the encoded image latents. + scheduler ([`FlowMatchEulerDiscreteScheduler`]): + A scheduler to be used in combination with `transformer` to denoise the encoded image latents. + vae ([`AutoencoderKL`]): + Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. + text_encoder ([`T5EncoderModel`]): + [T5](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5EncoderModel), specifically + the [google/t5-v1_1-xxl](https://huggingface.co/google/t5-v1_1-xxl) variant. + tokenizer (`T5TokenizerFast`): + Tokenizer of class + [T5TokenizerFast](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5TokenizerFast). + """ + + model_cpu_offload_seq = "text_encoder->transformer->vae" + _callback_tensor_inputs = ["latents", "prompt_embeds"] + + def __init__( + self, + scheduler: FlowMatchEulerDiscreteScheduler, + vae: AutoencoderKL, + text_encoder: T5EncoderModel, + tokenizer: T5TokenizerFast, + transformer: ChromaTransformer2DModel, + ): + super().__init__() + + self.register_modules( + vae=vae, + text_encoder=text_encoder, + tokenizer=tokenizer, + transformer=transformer, + scheduler=scheduler, + ) + self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) if getattr(self, "vae", None) else 8 + # Chroma latents are turned into 2x2 patches and packed. This means the latent width and height has to be divisible + # by the patch size. So the vae scale factor is multiplied by the patch size to account for this + self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor * 2) + self.tokenizer_max_length = ( + self.tokenizer.model_max_length if hasattr(self, "tokenizer") and self.tokenizer is not None else 512 + ) + self.default_sample_size = 128 + + def _get_chroma_attn_mask(self, length: torch.Tensor, max_sequence_length: int) -> torch.Tensor: + """ + Create attention mask for Chroma T5 encoder. + + Args: + length: Tensor containing the actual sequence lengths for each batch item + max_sequence_length: Maximum sequence length + + Returns: + Boolean attention mask tensor + """ + attention_mask = torch.zeros((length.shape[0], max_sequence_length), dtype=torch.bool, device=length.device) + for i, n_tokens in enumerate(length): + n_tokens = torch.min(n_tokens, torch.tensor(max_sequence_length, device=length.device)) + attention_mask[i, :n_tokens] = True + return attention_mask + + def _get_t5_prompt_embeds( + self, + prompt: Union[str, List[str]] = None, + num_images_per_prompt: int = 1, + max_sequence_length: int = 512, + device: Optional[torch.device] = None, + dtype: Optional[torch.dtype] = None, + ): + """ + Encode prompts using T5 encoder with proper attention masking. + """ + device = device or self._execution_device + dtype = dtype or self.text_encoder.dtype + + prompt = [prompt] if isinstance(prompt, str) else prompt + batch_size = len(prompt) + + if isinstance(self, TextualInversionLoaderMixin): + prompt = self.maybe_convert_prompt(prompt, self.tokenizer) + + text_inputs = self.tokenizer( + prompt, + padding="max_length", + max_length=max_sequence_length, + truncation=True, + return_length=True, # Always return length for Chroma attention masking + return_overflowing_tokens=False, + return_tensors="pt", + ) + text_input_ids = text_inputs.input_ids + untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids + + if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids): + removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1]) + logger.warning( + "The following part of your input was truncated because `max_sequence_length` is set to " + f" {max_sequence_length} tokens: {removed_text}" + ) + + # Create attention mask for Chroma + attention_mask = self._get_chroma_attn_mask(text_inputs.length, max_sequence_length).to(device) + + prompt_embeds = self.text_encoder( + text_input_ids.to(device), + output_hidden_states=False, + attention_mask=attention_mask, + )[0] + + dtype = self.text_encoder.dtype + prompt_embeds = prompt_embeds.to(dtype=dtype, device=device) + + _, seq_len, _ = prompt_embeds.shape + + # duplicate text embeddings for each generation per prompt, using mps friendly method + prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) + prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) + + return prompt_embeds + + def encode_prompt( + self, + prompt: Union[str, List[str]], + device: Optional[torch.device] = None, + num_images_per_prompt: int = 1, + prompt_embeds: Optional[torch.FloatTensor] = None, + max_sequence_length: int = 512, + lora_scale: Optional[float] = None, + ): + r""" + Encode prompts using only T5 encoder (no CLIP encoder for Chroma). + + Args: + prompt (`str` or `List[str]`, *optional*): + prompt to be encoded + device: (`torch.device`): + torch device + num_images_per_prompt (`int`): + number of images that should be generated per prompt + prompt_embeds (`torch.FloatTensor`, *optional*): + Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not + provided, text embeddings will be generated from `prompt` input argument. + lora_scale (`float`, *optional*): + A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded. + """ + device = device or self._execution_device + + # set lora scale so that monkey patched LoRA + # function of text encoder can correctly access it + if lora_scale is not None and hasattr(self, '_lora_scale'): + self._lora_scale = lora_scale + + # dynamically adjust the LoRA scale + if self.text_encoder is not None and USE_PEFT_BACKEND: + scale_lora_layers(self.text_encoder, lora_scale) + + prompt = [prompt] if isinstance(prompt, str) else prompt + + if prompt_embeds is None: + # Use T5 encoder only (no CLIP encoder for Chroma) + prompt_embeds = self._get_t5_prompt_embeds( + prompt=prompt, + num_images_per_prompt=num_images_per_prompt, + max_sequence_length=max_sequence_length, + device=device, + ) + + if self.text_encoder is not None: + if hasattr(self, '_lora_scale') and USE_PEFT_BACKEND: + # Retrieve the original scale by scaling back the LoRA layers + unscale_lora_layers(self.text_encoder, lora_scale) + + dtype = self.text_encoder.dtype if self.text_encoder is not None else self.transformer.dtype + text_ids = torch.zeros(prompt_embeds.shape[1], 3).to(device=device, dtype=dtype) + + return prompt_embeds, text_ids + + def check_inputs( + self, + prompt, + height, + width, + negative_prompt=None, + prompt_embeds=None, + negative_prompt_embeds=None, + callback_on_step_end_tensor_inputs=None, + max_sequence_length=None, + ): + if height % (self.vae_scale_factor * 2) != 0 or width % (self.vae_scale_factor * 2) != 0: + logger.warning( + f"`height` and `width` have to be divisible by {self.vae_scale_factor * 2} but are {height} and {width}. Dimensions will be resized accordingly" + ) + + if callback_on_step_end_tensor_inputs is not None and not all( + k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs + ): + raise ValueError( + f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}" + ) + + if prompt is not None and prompt_embeds is not None: + raise ValueError( + f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" + " only forward one of the two." + ) + elif prompt is None and prompt_embeds is None: + raise ValueError( + "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." + ) + elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): + raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") + + if negative_prompt is not None and negative_prompt_embeds is not None: + raise ValueError( + f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" + f" {negative_prompt_embeds}. Please make sure to only forward one of the two." + ) + + if max_sequence_length is not None and max_sequence_length > 512: + raise ValueError(f"`max_sequence_length` cannot be greater than 512 but is {max_sequence_length}") + + @staticmethod + def _prepare_latent_image_ids(batch_size, height, width, device, dtype): + latent_image_ids = torch.zeros(height, width, 3) + latent_image_ids[..., 1] = latent_image_ids[..., 1] + torch.arange(height)[:, None] + latent_image_ids[..., 2] = latent_image_ids[..., 2] + torch.arange(width)[None, :] + + latent_image_id_height, latent_image_id_width, latent_image_id_channels = latent_image_ids.shape + + latent_image_ids = latent_image_ids.reshape( + latent_image_id_height * latent_image_id_width, latent_image_id_channels + ) + + return latent_image_ids.to(device=device, dtype=dtype) + + @staticmethod + def _pack_latents(latents, batch_size, num_channels_latents, height, width): + latents = latents.view(batch_size, num_channels_latents, height // 2, 2, width // 2, 2) + latents = latents.permute(0, 2, 4, 1, 3, 5) + latents = latents.reshape(batch_size, (height // 2) * (width // 2), num_channels_latents * 4) + + return latents + + @staticmethod + def _unpack_latents(latents, height, width, vae_scale_factor): + batch_size, num_patches, channels = latents.shape + + # VAE applies 8x compression on images but we must also account for packing which requires + # latent height and width to be divisible by 2. + height = 2 * (int(height) // (vae_scale_factor * 2)) + width = 2 * (int(width) // (vae_scale_factor * 2)) + + latents = latents.view(batch_size, height // 2, width // 2, channels // 4, 2, 2) + latents = latents.permute(0, 3, 1, 4, 2, 5) + + latents = latents.reshape(batch_size, channels // (2 * 2), height, width) + + return latents + + def enable_vae_slicing(self): + r""" + Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to + compute decoding in several steps. This is useful to save some memory and allow larger batch sizes. + """ + self.vae.enable_slicing() + + def disable_vae_slicing(self): + r""" + Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to + computing decoding in one step. + """ + self.vae.disable_slicing() + + def enable_vae_tiling(self): + r""" + Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to + compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow + processing larger images. + """ + self.vae.enable_tiling() + + def disable_vae_tiling(self): + r""" + Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to + computing decoding in one step. + """ + self.vae.disable_tiling() + + def prepare_latents( + self, + batch_size, + num_channels_latents, + height, + width, + dtype, + device, + generator, + latents=None, + ): + # VAE applies 8x compression on images but we must also account for packing which requires + # latent height and width to be divisible by 2. + height = 2 * (int(height) // (self.vae_scale_factor * 2)) + width = 2 * (int(width) // (self.vae_scale_factor * 2)) + + shape = (batch_size, num_channels_latents, height, width) + + if latents is not None: + latent_image_ids = self._prepare_latent_image_ids(batch_size, height // 2, width // 2, device, dtype) + return latents.to(device=device, dtype=dtype), latent_image_ids + + if isinstance(generator, list) and len(generator) != batch_size: + raise ValueError( + f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" + f" size of {batch_size}. Make sure the batch size matches the length of the generators." + ) + + latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) + latents = self._pack_latents(latents, batch_size, num_channels_latents, height, width) + + latent_image_ids = self._prepare_latent_image_ids(batch_size, height // 2, width // 2, device, dtype) + + return latents, latent_image_ids + + @property + def guidance_scale(self): + return self._guidance_scale + + @property + def joint_attention_kwargs(self): + return self._joint_attention_kwargs + + @property + def num_timesteps(self): + return self._num_timesteps + + @property + def current_timestep(self): + return self._current_timestep + + @property + def interrupt(self): + return self._interrupt + + @torch.no_grad() + @replace_example_docstring(EXAMPLE_DOC_STRING) + def __call__( + self, + prompt: Union[str, List[str]] = None, + negative_prompt: Union[str, List[str]] = None, + true_cfg_scale: float = 1.0, + height: Optional[int] = None, + width: Optional[int] = None, + num_inference_steps: int = 28, + sigmas: Optional[List[float]] = None, + guidance_scale: float = 3.5, + num_images_per_prompt: Optional[int] = 1, + generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, + latents: Optional[torch.FloatTensor] = None, + prompt_embeds: Optional[torch.FloatTensor] = None, + negative_prompt_embeds: Optional[torch.FloatTensor] = None, + output_type: Optional[str] = "pil", + return_dict: bool = True, + joint_attention_kwargs: Optional[Dict[str, Any]] = None, + callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, + callback_on_step_end_tensor_inputs: List[str] = ["latents"], + max_sequence_length: int = 512, + ): + r""" + Function invoked when calling the pipeline for generation. + + Args: + prompt (`str` or `List[str]`, *optional*): + The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. + instead. + negative_prompt (`str` or `List[str]`, *optional*): + The prompt or prompts not to guide the image generation. If not defined, one has to pass + `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `true_cfg_scale` is + not greater than `1`). + true_cfg_scale (`float`, *optional*, defaults to 1.0): + When > 1.0 and a provided `negative_prompt`, enables true classifier-free guidance. + height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): + The height in pixels of the generated image. This is set to 1024 by default for the best results. + width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): + The width in pixels of the generated image. This is set to 1024 by default for the best results. + num_inference_steps (`int`, *optional*, defaults to 50): + The number of denoising steps. More denoising steps usually lead to a higher quality image at the + expense of slower inference. + sigmas (`List[float]`, *optional*): + Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in + their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed + will be used. + guidance_scale (`float`, *optional*, defaults to 3.5): + Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). + `guidance_scale` is defined as `w` of equation 2. of [Imagen + Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > + 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, + usually at the expense of lower image quality. + num_images_per_prompt (`int`, *optional*, defaults to 1): + The number of images to generate per prompt. + generator (`torch.Generator` or `List[torch.Generator]`, *optional*): + One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) + to make generation deterministic. + latents (`torch.FloatTensor`, *optional*): + Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image + generation. Can be used to tweak the same generation with different prompts. If not provided, a latents + tensor will ge generated by sampling using the supplied random `generator`. + prompt_embeds (`torch.FloatTensor`, *optional*): + Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not + provided, text embeddings will be generated from `prompt` input argument. + negative_prompt_embeds (`torch.FloatTensor`, *optional*): + Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt + weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input + argument. + output_type (`str`, *optional*, defaults to `"pil"`): + The output format of the generate image. Choose between + [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. + return_dict (`bool`, *optional*, defaults to `True`): + Whether or not to return a [`~pipelines.flux.FluxPipelineOutput`] instead of a plain tuple. + joint_attention_kwargs (`dict`, *optional*): + A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under + `self.processor` in + [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). + callback_on_step_end (`Callable`, *optional*): + A function that calls at the end of each denoising steps during the inference. The function is called + with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, + callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by + `callback_on_step_end_tensor_inputs`. + callback_on_step_end_tensor_inputs (`List`, *optional*): + The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list + will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the + `._callback_tensor_inputs` attribute of your pipeline class. + max_sequence_length (`int` defaults to 512): Maximum sequence length to use with the `prompt`. + + Examples: + + Returns: + [`~pipelines.flux.FluxPipelineOutput`] or `tuple`: [`~pipelines.flux.FluxPipelineOutput`] if `return_dict` + is True, otherwise a `tuple`. When returning a tuple, the first element is a list with the generated + images. + """ + + height = height or self.default_sample_size * self.vae_scale_factor + width = width or self.default_sample_size * self.vae_scale_factor + + # 1. Check inputs. Raise error if not correct + self.check_inputs( + prompt, + height, + width, + negative_prompt=negative_prompt, + prompt_embeds=prompt_embeds, + negative_prompt_embeds=negative_prompt_embeds, + callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs, + max_sequence_length=max_sequence_length, + ) + + self._guidance_scale = guidance_scale + self._joint_attention_kwargs = joint_attention_kwargs + self._current_timestep = None + self._interrupt = False + + # 2. Define call parameters + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + + device = self._execution_device + + lora_scale = ( + self.joint_attention_kwargs.get("scale", None) if self.joint_attention_kwargs is not None else None + ) + has_neg_prompt = negative_prompt is not None or negative_prompt_embeds is not None + do_true_cfg = true_cfg_scale > 1 and has_neg_prompt + + # 3. Encode prompt (T5 only, no pooled projections) + prompt_embeds, text_ids = self.encode_prompt( + prompt=prompt, + prompt_embeds=prompt_embeds, + device=device, + num_images_per_prompt=num_images_per_prompt, + max_sequence_length=max_sequence_length, + lora_scale=lora_scale, + ) + if do_true_cfg: + negative_prompt_embeds, negative_text_ids = self.encode_prompt( + prompt=negative_prompt, + prompt_embeds=negative_prompt_embeds, + device=device, + num_images_per_prompt=num_images_per_prompt, + max_sequence_length=max_sequence_length, + lora_scale=lora_scale, + ) + + # 4. Prepare latent variables + num_channels_latents = self.transformer.config.in_channels // 4 + latents, latent_image_ids = self.prepare_latents( + batch_size * num_images_per_prompt, + num_channels_latents, + height, + width, + prompt_embeds.dtype, + device, + generator, + latents, + ) + + # 5. Prepare timesteps + sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps) if sigmas is None else sigmas + image_seq_len = latents.shape[1] + mu = calculate_shift( + image_seq_len, + self.scheduler.config.get("base_image_seq_len", 256), + self.scheduler.config.get("max_image_seq_len", 4096), + self.scheduler.config.get("base_shift", 0.5), + self.scheduler.config.get("max_shift", 1.15), + ) + timesteps, num_inference_steps = retrieve_timesteps( + self.scheduler, + num_inference_steps, + device, + sigmas=sigmas, + mu=mu, + ) + num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0) + self._num_timesteps = len(timesteps) + + # handle guidance + if self.transformer.config.guidance_embeds: + guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float32) + guidance = guidance.expand(latents.shape[0]) + else: + guidance = None + + if self.joint_attention_kwargs is None: + self._joint_attention_kwargs = {} + + # 6. Denoising loop + with self.progress_bar(total=num_inference_steps) as progress_bar: + for i, t in enumerate(timesteps): + if self.interrupt: + continue + + self._current_timestep = t + # broadcast to batch dimension in a way that's compatible with ONNX/Core ML + timestep = t.expand(latents.shape[0]).to(latents.dtype) + + # Chroma uses distilled guidance instead of pooled projections + noise_pred = self.transformer( + hidden_states=latents, + timestep=timestep / 1000, + guidance=guidance, + pooled_projections=None, # No pooled projections for Chroma + encoder_hidden_states=prompt_embeds, + txt_ids=text_ids, + img_ids=latent_image_ids, + joint_attention_kwargs=self.joint_attention_kwargs, + return_dict=False, + )[0] + + if do_true_cfg: + neg_noise_pred = self.transformer( + hidden_states=latents, + timestep=timestep / 1000, + guidance=guidance, + pooled_projections=None, # No pooled projections for Chroma + encoder_hidden_states=negative_prompt_embeds, + txt_ids=negative_text_ids, + img_ids=latent_image_ids, + joint_attention_kwargs=self.joint_attention_kwargs, + return_dict=False, + )[0] + noise_pred = neg_noise_pred + true_cfg_scale * (noise_pred - neg_noise_pred) + + # compute the previous noisy sample x_t -> x_t-1 + latents_dtype = latents.dtype + latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0] + + if latents.dtype != latents_dtype: + if torch.backends.mps.is_available(): + # some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272 + latents = latents.to(latents_dtype) + + if callback_on_step_end is not None: + callback_kwargs = {} + for k in callback_on_step_end_tensor_inputs: + callback_kwargs[k] = locals()[k] + callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) + + latents = callback_outputs.pop("latents", latents) + prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) + + # call the callback, if provided + if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): + progress_bar.update() + + if XLA_AVAILABLE: + xm.mark_step() + + self._current_timestep = None + + if output_type == "latent": + image = latents + else: + latents = self._unpack_latents(latents, height, width, self.vae_scale_factor) + latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor + image = self.vae.decode(latents, return_dict=False)[0] + image = self.image_processor.postprocess(image, output_type=output_type) + + # Offload all models + self.maybe_free_model_hooks() + + if not return_dict: + return (image,) + + return FluxPipelineOutput(images=image)