|
| 1 | +import cv2, pickle |
| 2 | +import numpy as np |
| 3 | +import tensorflow as tf |
| 4 | +from cnn_tf import cnn_model_fn |
| 5 | +import os |
| 6 | +import sqlite3, pyttsx3 |
| 7 | +from keras.models import load_model |
| 8 | +from threading import Thread |
| 9 | + |
| 10 | +engine = pyttsx3.init() |
| 11 | +engine.setProperty('rate', 150) |
| 12 | +os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' |
| 13 | +model = load_model('cnn_model_keras2.h5') |
| 14 | + |
| 15 | +def get_hand_hist(): |
| 16 | + with open("hist", "rb") as f: |
| 17 | + hist = pickle.load(f) |
| 18 | + return hist |
| 19 | + |
| 20 | +def get_image_size(): |
| 21 | + img = cv2.imread('gestures/0/100.jpg', 0) |
| 22 | + return img.shape |
| 23 | + |
| 24 | +image_x, image_y = get_image_size() |
| 25 | + |
| 26 | +def keras_process_image(img): |
| 27 | + img = cv2.resize(img, (image_x, image_y)) |
| 28 | + img = np.array(img, dtype=np.float32) |
| 29 | + img = np.reshape(img, (1, image_x, image_y, 1)) |
| 30 | + return img |
| 31 | + |
| 32 | +def keras_predict(model, image): |
| 33 | + processed = keras_process_image(image) |
| 34 | + pred_probab = model.predict(processed)[0] |
| 35 | + pred_class = list(pred_probab).index(max(pred_probab)) |
| 36 | + return max(pred_probab), pred_class |
| 37 | + |
| 38 | +def get_pred_text_from_db(pred_class): |
| 39 | + conn = sqlite3.connect("gesture_db.db") |
| 40 | + cmd = "SELECT g_name FROM gesture WHERE g_id="+str(pred_class) |
| 41 | + cursor = conn.execute(cmd) |
| 42 | + for row in cursor: |
| 43 | + return row[0] |
| 44 | + |
| 45 | +def get_pred_from_contour(contour, thresh): |
| 46 | + x1, y1, w1, h1 = cv2.boundingRect(contour) |
| 47 | + save_img = thresh[y1:y1+h1, x1:x1+w1] |
| 48 | + text = "" |
| 49 | + if w1 > h1: |
| 50 | + save_img = cv2.copyMakeBorder(save_img, int((w1-h1)/2) , int((w1-h1)/2) , 0, 0, cv2.BORDER_CONSTANT, (0, 0, 0)) |
| 51 | + elif h1 > w1: |
| 52 | + save_img = cv2.copyMakeBorder(save_img, 0, 0, int((h1-w1)/2) , int((h1-w1)/2) , cv2.BORDER_CONSTANT, (0, 0, 0)) |
| 53 | + pred_probab, pred_class = keras_predict(model, save_img) |
| 54 | + if pred_probab*100 > 70: |
| 55 | + text = get_pred_text_from_db(pred_class) |
| 56 | + return text |
| 57 | + |
| 58 | +def get_operator(pred_text): |
| 59 | + try: |
| 60 | + pred_text = int(pred_text) |
| 61 | + except: |
| 62 | + return "" |
| 63 | + operator = "" |
| 64 | + if pred_text == 1: |
| 65 | + operator = "+" |
| 66 | + elif pred_text == 2: |
| 67 | + operator = "-" |
| 68 | + elif pred_text == 3: |
| 69 | + operator = "*" |
| 70 | + elif pred_text == 4: |
| 71 | + operator = "/" |
| 72 | + elif pred_text == 5: |
| 73 | + operator = "%" |
| 74 | + elif pred_text == 6: |
| 75 | + operator = "**" |
| 76 | + elif pred_text == 7: |
| 77 | + operator = ">>" |
| 78 | + elif pred_text == 8: |
| 79 | + operator = "<<" |
| 80 | + elif pred_text == 9: |
| 81 | + operator = "&" |
| 82 | + elif pred_text == 0: |
| 83 | + operator = "|" |
| 84 | + return operator |
| 85 | + |
| 86 | +hist = get_hand_hist() |
| 87 | +x, y, w, h = 300, 100, 300, 300 |
| 88 | +is_voice_on = True |
| 89 | + |
| 90 | +def get_img_contour_thresh(img): |
| 91 | + img = cv2.flip(img, 1) |
| 92 | + imgHSV = cv2.cvtColor(img, cv2.COLOR_BGR2HSV) |
| 93 | + dst = cv2.calcBackProject([imgHSV], [0, 1], hist, [0, 180, 0, 256], 1) |
| 94 | + disc = cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(10,10)) |
| 95 | + cv2.filter2D(dst,-1,disc,dst) |
| 96 | + blur = cv2.GaussianBlur(dst, (11,11), 0) |
| 97 | + blur = cv2.medianBlur(blur, 15) |
| 98 | + thresh = cv2.threshold(blur,0,255,cv2.THRESH_BINARY+cv2.THRESH_OTSU)[1] |
| 99 | + thresh = cv2.merge((thresh,thresh,thresh)) |
| 100 | + thresh = cv2.cvtColor(thresh, cv2.COLOR_BGR2GRAY) |
| 101 | + thresh = thresh[y:y+h, x:x+w] |
| 102 | + contours = cv2.findContours(thresh.copy(), cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)[0] |
| 103 | + return img, contours, thresh |
| 104 | + |
| 105 | +def say_text(text): |
| 106 | + if not is_voice_on: |
| 107 | + return |
| 108 | + while engine._inLoop: |
| 109 | + pass |
| 110 | + engine.say(text) |
| 111 | + engine.runAndWait() |
| 112 | + |
| 113 | +def calculator_mode(cam): |
| 114 | + global is_voice_on |
| 115 | + flag = {"first": False, "operator": False, "second": False, "clear": False} |
| 116 | + count_same_frames = 0 |
| 117 | + first, operator, second = "", "", "" |
| 118 | + pred_text = "" |
| 119 | + calc_text = "" |
| 120 | + info = "Enter first number" |
| 121 | + Thread(target=say_text, args=(info,)).start() |
| 122 | + count_clear_frames = 0 |
| 123 | + while True: |
| 124 | + img = cam.read()[1] |
| 125 | + img = cv2.resize(img, (640, 480)) |
| 126 | + img, contours, thresh = get_img_contour_thresh(img) |
| 127 | + old_pred_text = pred_text |
| 128 | + if len(contours) > 0: |
| 129 | + contour = max(contours, key = cv2.contourArea) |
| 130 | + if cv2.contourArea(contour) > 10000: |
| 131 | + pred_text = get_pred_from_contour(contour, thresh) |
| 132 | + if old_pred_text == pred_text: |
| 133 | + count_same_frames += 1 |
| 134 | + else: |
| 135 | + count_same_frames = 0 |
| 136 | + |
| 137 | + if pred_text == "C": |
| 138 | + if count_same_frames > 5: |
| 139 | + count_same_frames = 0 |
| 140 | + first, second, operator, pred_text, calc_text = '', '', '', '', '' |
| 141 | + flag['first'], flag['operator'], flag['second'], flag['clear'] = False, False, False, False |
| 142 | + info = "Enter first number" |
| 143 | + Thread(target=say_text, args=(info,)).start() |
| 144 | + |
| 145 | + elif pred_text == "Best of Luck " and count_same_frames > 15: |
| 146 | + count_same_frames = 0 |
| 147 | + if flag['clear']: |
| 148 | + first, second, operator, pred_text, calc_text = '', '', '', '', '' |
| 149 | + flag['first'], flag['operator'], flag['second'], flag['clear'] = False, False, False, False |
| 150 | + info = "Enter first number" |
| 151 | + Thread(target=say_text, args=(info,)).start() |
| 152 | + elif second != '': |
| 153 | + flag['second'] = True |
| 154 | + info = "Clear screen" |
| 155 | + #Thread(target=say_text, args=(info,)).start() |
| 156 | + second = '' |
| 157 | + flag['clear'] = True |
| 158 | + try: |
| 159 | + calc_text += "= "+str(eval(calc_text)) |
| 160 | + except: |
| 161 | + calc_text = "Invalid operation" |
| 162 | + if is_voice_on: |
| 163 | + speech = calc_text |
| 164 | + speech = speech.replace('-', ' minus ') |
| 165 | + speech = speech.replace('/', ' divided by ') |
| 166 | + speech = speech.replace('**', ' raised to the power ') |
| 167 | + speech = speech.replace('*', ' multiplied by ') |
| 168 | + speech = speech.replace('%', ' mod ') |
| 169 | + speech = speech.replace('>>', ' bitwise right shift ') |
| 170 | + speech = speech.replace('<<', ' bitwise leftt shift ') |
| 171 | + speech = speech.replace('&', ' bitwise and ') |
| 172 | + speech = speech.replace('|', ' bitwise or ') |
| 173 | + Thread(target=say_text, args=(speech,)).start() |
| 174 | + elif first != '': |
| 175 | + flag['first'] = True |
| 176 | + info = "Enter operator" |
| 177 | + Thread(target=say_text, args=(info,)).start() |
| 178 | + first = '' |
| 179 | + |
| 180 | + elif pred_text != "Best of Luck " and pred_text.isnumeric(): |
| 181 | + if flag['first'] == False: |
| 182 | + if count_same_frames > 15: |
| 183 | + count_same_frames = 0 |
| 184 | + Thread(target=say_text, args=(pred_text,)).start() |
| 185 | + first += pred_text |
| 186 | + calc_text += pred_text |
| 187 | + elif flag['operator'] == False: |
| 188 | + operator = get_operator(pred_text) |
| 189 | + if count_same_frames > 15: |
| 190 | + count_same_frames = 0 |
| 191 | + flag['operator'] = True |
| 192 | + calc_text += operator |
| 193 | + info = "Enter second number" |
| 194 | + Thread(target=say_text, args=(info,)).start() |
| 195 | + operator = '' |
| 196 | + elif flag['second'] == False: |
| 197 | + if count_same_frames > 15: |
| 198 | + Thread(target=say_text, args=(pred_text,)).start() |
| 199 | + second += pred_text |
| 200 | + calc_text += pred_text |
| 201 | + count_same_frames = 0 |
| 202 | + |
| 203 | + if count_clear_frames == 30: |
| 204 | + first, second, operator, pred_text, calc_text = '', '', '', '', '' |
| 205 | + flag['first'], flag['operator'], flag['second'], flag['clear'] = False, False, False, False |
| 206 | + info = "Enter first number" |
| 207 | + Thread(target=say_text, args=(info,)).start() |
| 208 | + count_clear_frames = 0 |
| 209 | + |
| 210 | + blackboard = np.zeros((480, 640, 3), dtype=np.uint8) |
| 211 | + cv2.putText(blackboard, "Calculator Mode", (100, 50), cv2.FONT_HERSHEY_TRIPLEX, 1.5, (255, 0,0)) |
| 212 | + cv2.putText(blackboard, "Predicted text- " + pred_text, (30, 100), cv2.FONT_HERSHEY_TRIPLEX, 1, (255, 255, 0)) |
| 213 | + cv2.putText(blackboard, "Operator " + operator, (30, 140), cv2.FONT_HERSHEY_TRIPLEX, 1, (255, 255, 127)) |
| 214 | + cv2.putText(blackboard, calc_text, (30, 240), cv2.FONT_HERSHEY_TRIPLEX, 2, (255, 255, 255)) |
| 215 | + cv2.putText(blackboard, info, (30, 440), cv2.FONT_HERSHEY_TRIPLEX, 1, (0, 255, 255) ) |
| 216 | + if is_voice_on: |
| 217 | + cv2.putText(blackboard, " ", (450, 440), cv2.FONT_HERSHEY_TRIPLEX, 1, (255, 127, 0)) |
| 218 | + else: |
| 219 | + cv2.putText(blackboard, " ", (450, 440), cv2.FONT_HERSHEY_TRIPLEX, 1, (255, 127, 0)) |
| 220 | + cv2.rectangle(img, (x,y), (x+w, y+h), (0,255,0), 2) |
| 221 | + res = np.hstack((img, blackboard)) |
| 222 | + cv2.imshow("Recognizing gesture", res) |
| 223 | + cv2.imshow("thresh", thresh) |
| 224 | + keypress = cv2.waitKey(1) |
| 225 | + if keypress == ord('q') or keypress == ord('t'): |
| 226 | + break |
| 227 | + if keypress == ord('v') and is_voice_on: |
| 228 | + is_voice_on = False |
| 229 | + elif keypress == ord('v') and not is_voice_on: |
| 230 | + is_voice_on = True |
| 231 | + |
| 232 | + if keypress == ord('t'): |
| 233 | + return 1 |
| 234 | + else: |
| 235 | + return 0 |
| 236 | + |
| 237 | +def text_mode(cam): |
| 238 | + global is_voice_on |
| 239 | + text = "" |
| 240 | + word = "" |
| 241 | + count_same_frame = 0 |
| 242 | + while True: |
| 243 | + img = cam.read()[1] |
| 244 | + img = cv2.resize(img, (640, 480)) |
| 245 | + img, contours, thresh = get_img_contour_thresh(img) |
| 246 | + old_text = text |
| 247 | + if len(contours) > 0: |
| 248 | + contour = max(contours, key = cv2.contourArea) |
| 249 | + if cv2.contourArea(contour) > 10000: |
| 250 | + text = get_pred_from_contour(contour, thresh) |
| 251 | + if old_text == text: |
| 252 | + count_same_frame += 1 |
| 253 | + else: |
| 254 | + count_same_frame = 0 |
| 255 | + |
| 256 | + if count_same_frame > 20: |
| 257 | + if len(text) == 1: |
| 258 | + Thread(target=say_text, args=(text, )).start() |
| 259 | + word = word + text |
| 260 | + if word.startswith('I/Me '): |
| 261 | + word = word.replace('I/Me ', 'I ') |
| 262 | + elif word.endswith('I/Me '): |
| 263 | + word = word.replace('I/Me ', 'me ') |
| 264 | + count_same_frame = 0 |
| 265 | + |
| 266 | + elif cv2.contourArea(contour) < 1000: |
| 267 | + if word != '': |
| 268 | + #print('yolo') |
| 269 | + #say_text(text) |
| 270 | + Thread(target=say_text, args=(word, )).start() |
| 271 | + text = "" |
| 272 | + word = "" |
| 273 | + else: |
| 274 | + if word != '': |
| 275 | + #print('yolo1') |
| 276 | + #say_text(text) |
| 277 | + Thread(target=say_text, args=(word, )).start() |
| 278 | + text = "" |
| 279 | + word = "" |
| 280 | + blackboard = np.zeros((480, 640, 3), dtype=np.uint8) |
| 281 | + cv2.putText(blackboard, " ", (180, 50), cv2.FONT_HERSHEY_TRIPLEX, 1.5, (255, 0,0)) |
| 282 | + cv2.putText(blackboard, "Predicted text- " + text, (30, 100), cv2.FONT_HERSHEY_TRIPLEX, 1, (255, 255, 0)) |
| 283 | + cv2.putText(blackboard, word, (30, 240), cv2.FONT_HERSHEY_TRIPLEX, 2, (255, 255, 255)) |
| 284 | + if is_voice_on: |
| 285 | + cv2.putText(blackboard, " ", (450, 440), cv2.FONT_HERSHEY_TRIPLEX, 1, (255, 127, 0)) |
| 286 | + else: |
| 287 | + cv2.putText(blackboard, " ", (450, 440), cv2.FONT_HERSHEY_TRIPLEX, 1, (255, 127, 0)) |
| 288 | + cv2.rectangle(img, (x,y), (x+w, y+h), (0,255,0), 2) |
| 289 | + res = np.hstack((img, blackboard)) |
| 290 | + cv2.imshow("Recognizing gesture", res) |
| 291 | + cv2.imshow("thresh", thresh) |
| 292 | + keypress = cv2.waitKey(1) |
| 293 | + if keypress == ord('q') or keypress == ord('c'): |
| 294 | + break |
| 295 | + if keypress == ord('v') and is_voice_on: |
| 296 | + is_voice_on = False |
| 297 | + elif keypress == ord('v') and not is_voice_on: |
| 298 | + is_voice_on = True |
| 299 | + |
| 300 | + if keypress == ord('c'): |
| 301 | + return 2 |
| 302 | + else: |
| 303 | + return 0 |
| 304 | + |
| 305 | +def recognize(): |
| 306 | + cam = cv2.VideoCapture(1) |
| 307 | + if cam.read()[0]==False: |
| 308 | + cam = cv2.VideoCapture(0) |
| 309 | + text = "" |
| 310 | + word = "" |
| 311 | + count_same_frame = 0 |
| 312 | + keypress = 1 |
| 313 | + while True: |
| 314 | + if keypress == 1: |
| 315 | + keypress = text_mode(cam) |
| 316 | + elif keypress == 2: |
| 317 | + keypress = calculator_mode(cam) |
| 318 | + else: |
| 319 | + break |
| 320 | + |
| 321 | +keras_predict(model, np.zeros((50, 50), dtype = np.uint8)) |
| 322 | +recognize() |
0 commit comments