@@ -56,7 +56,7 @@ import Nix.Utils
5656import Data.Eq.Deriving
5757
5858-- | An NValueF p m r represents all the possible types of Nix values.
59- --
59+ --
6060-- Is is the base functor to form the Free monad of nix expressions.
6161-- The parameter `r` represents Nix values in their final form (NValue).
6262-- The parameter `p` represents exactly the same type, but is kept separate
@@ -77,7 +77,7 @@ import Data.Eq.Deriving
7777--
7878-- `t` is not really used here, but is needed to type the (NValue t f m)
7979-- used to tie the knot of the `p` parameter in the inner NValueF.
80- --
80+ --
8181-- `a` is will be an `NValue t f m` when NValue' functor is turned into a
8282-- Free monad.
8383
@@ -86,7 +86,7 @@ import Data.Eq.Deriving
8686-- functor and into the Free recursive construction.
8787--
8888-- Concretely, an NValue t f m can either be a thunk, representing a value
89- -- yet to be evaluated (Pure t), or a know value in WHNF
89+ -- yet to be evaluated (Pure t), or a know value in WHNF
9090-- (Free (NValue' t f m (NValue t f m))) = (Free (f (NValueF NValue m NValue))
9191-- That is, a base value type, wrapped into the generic `f`
9292-- functor, and based on other NValue's, which can in turn be either thunks,
@@ -281,7 +281,7 @@ hoistNValueF lft =
281281newtype NValue' t f m a =
282282 NValue'
283283 {
284- -- | Applying F-algebra carrier (@NValue @) to the F-algebra Base functor data type (@NValueF @), forming the \( F(A)-> A \)).
284+ -- | Applying F-algebra Base functor data type (@NValueF @) to the F-algebra carrier (@NValue @), forming the \( F(A)-> A \)).
285285 _nValue :: f (NValueF (NValue t f m ) m a )
286286 }
287287 deriving (Generic , Typeable , Functor , Foldable )
0 commit comments