You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: content/schedule.md
+13-21Lines changed: 13 additions & 21 deletions
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -29,37 +29,29 @@ The schedule is as follows:
29
29
30
30
## Accepted papers
31
31
32
-
To be announced.
33
-
34
-
<!--
35
-
36
-
The official joint proceedings (with the [L3MNGET Workshop](https://sites.google.com/view/llmworkshopedm/home)) can be found at [CEUR-WS here](https://ceur-ws.org/Vol-3840/).
32
+
<!--The official joint proceedings (with the [L3MNGET Workshop](https://sites.google.com/view/llmworkshopedm/home)) can be found at [CEUR-WS here](https://ceur-ws.org/Vol-3840/).-->
37
33
38
34
39
35
### Research papers
40
36
41
-
- **The Actionable Explanations for Student Success Prediction Models: A Benchmark Study on the Quality of Counterfactual Methods** [<a href="https://ceur-ws.org/Vol-3840/HEXED24_paper1.pdf" target="_blank">paper @ CEUR-WS</a>]\
37
+
-**Explainable Survival Student Dropout Prediction Models: A Case Study on Open University Learning Analytics Dataset**<!--[<a href="https://ceur-ws.org/Vol-3840/HEXED24_paper1.pdf" target="_blank">paper @ CEUR-WS</a>]-->\
*Yuang Wei, Yizhou Zhou, Yuan-Hao Jiang and Bo Jiang*
45
-
- **Combining Cognitive and Generative AI for Self-Explanation in Interactive AI Agents** [<a href="https://ceur-ws.org/Vol-3840/HEXED24_paper3.pdf" target="_blank">paper @ CEUR-WS</a>]\
46
-
*Shalini Sushri, Rahul Dass, Rhea Basappa, Hong Lu and Ashok Goel*
47
-
48
-
### Position papers
49
-
50
-
- **Towards a Unified Framework for Evaluating Explanations** [<a href="https://ceur-ws.org/Vol-3840/HEXED24_paper4.pdf" target="_blank">paper @ CEUR-WS</a>]\
39
+
-**Human-grounded XAI: An evaluation of explanation faithfulness and intelligibility for interpretable neural networks**<!--[<a href="https://ceur-ws.org/Vol-3840/HEXED24_paper2.pdf" target="_blank">paper @ CEUR-WS</a>]-->\
51
40
*Juan Pinto and Luc Paquette*
41
+
-**Human Experts vs. LLMs: Who Is Better at Explaining Student Clustering?**<!--[<a href="https://ceur-ws.org/Vol-3840/HEXED24_paper3.pdf" target="_blank">paper @ CEUR-WS</a>]-->\
42
+
*Elad Yacobson, Shelley Rap, Ron Blonder and Giora Alexandron*
43
+
-**RegKT: Interpretable and robust Deep Knowledge Tracing with IRT-regularizer**<!--[<a href="https://ceur-ws.org/Vol-3840/HEXED24_paper3.pdf" target="_blank">paper @ CEUR-WS</a>]-->\
44
+
*Samuel Girard, Juan Pinto, Jill-Jênn Vie and Amel Bouzeghoub*
45
+
46
+
### Encore papers
52
47
48
+
-**Improving Course Recommendation Systems with Explainable AI: LLM-Based Frameworks and Evaluations**<!--[<a href="https://educationaldatamining.org/edm2024/proceedings/2024.EDM-posters.69/index.html" target="_blank">paper @ EDM proceedings</a>]-->\
49
+
*Jiawei Li, Qianru Lyu, Wei Qiu and Andy W. H. Khong*
53
50
54
-
## Encore papers
55
51
56
-
- **Making Course Recommendation Explainable: A Knowledge Entity-Aware Model using Deep Learning** [<a href="https://educationaldatamining.org/edm2024/proceedings/2024.EDM-posters.69/index.html" target="_blank">paper @ EDM proceedings</a>]\
57
-
*Tianyuan Yang, Baofeng Ren, Boxuan Ma, Md Akib Zabed Khan, Tianjia He and Shin’Ichi Konomi*
58
-
- **How Ready Are Generative Pre-trained Large Language Models for Explaining Bengali Grammatical Errors?** [<a href="https://educationaldatamining.org/edm2024/proceedings/2024.EDM-posters.70/index.html" target="_blank">paper @ EDM proceedings</a>]\
52
+
<!-- - **How Ready Are Generative Pre-trained Large Language Models for Explaining Bengali Grammatical Errors?** [<a href="https://educationaldatamining.org/edm2024/proceedings/2024.EDM-posters.70/index.html" target="_blank">paper @ EDM proceedings</a>]\
59
53
*Subhankar Maity, Aniket Deroy and Sudeshna Sarkar*
60
54
- **Easing the Prediction of Student Dropout for everyone by integrating AutoML and Explainable Artificial Intelligence** [<a href="https://educationaldatamining.org/edm2024/proceedings/2024.EDM-posters.98/index.html" target="_blank">paper @ EDM proceedings</a>]\
61
55
*Pamela Buñay-Guisñan, Juan Alfonso Lara, Alberto Cano, Rebeca Cerezo and Cristóbal Romero*
62
56
- **Evaluating the Explainers: Black-Box Explainable Machine Learning for Student Success Prediction in MOOCs** [<a href="https://educationaldatamining.org/edm2022/proceedings/2022.EDM-long-papers.9/" target="_blank">paper @ EDM proceedings</a>]\
0 commit comments