diff --git a/classifiers/inception.py b/classifiers/inception.py index 068f222..81a6d4c 100755 --- a/classifiers/inception.py +++ b/classifiers/inception.py @@ -10,7 +10,7 @@ class Classifier_INCEPTION: - def __init__(self, output_directory, input_shape, nb_classes, verbose=False, build=True, batch_size=64, + def __init__(self, output_directory, input_shape, nb_classes, verbose=True, build=True, batch_size=64, nb_filters=32, use_residual=True, use_bottleneck=True, depth=6, kernel_size=41, nb_epochs=1500): self.output_directory = output_directory diff --git a/classifiers/nne.py b/classifiers/nne.py index 6a0a492..e637153 100755 --- a/classifiers/nne.py +++ b/classifiers/nne.py @@ -10,7 +10,7 @@ class Classifier_NNE: - def create_classifier(self, model_name, input_shape, nb_classes, output_directory, verbose=False, + def create_classifier(self, model_name, input_shape, nb_classes, output_directory, verbose=True, build=True): if self.check_if_match('inception*', model_name): from classifiers import inception @@ -22,7 +22,7 @@ def check_if_match(self, rex, name2): pattern = re.compile(rex) return pattern.match(name2) - def __init__(self, output_directory, input_shape, nb_classes, verbose=False, nb_iterations=5, + def __init__(self, output_directory, input_shape, nb_classes, verbose=True, nb_iterations=5, clf_name='inception'): self.classifiers = [clf_name] out_add = '' diff --git a/utils/constants.py b/utils/constants.py index c515a06..18e828a 100755 --- a/utils/constants.py +++ b/utils/constants.py @@ -18,8 +18,8 @@ UNIVARIATE_DATASET_NAMES = ['Meat', 'Coffee'] -UNIVARIATE_ARCHIVE_NAMES = ['TSC', 'InlineSkateXPs', 'SITS'] -UNIVARIATE_ARCHIVE_NAMES = ['TSC'] +UNIVARIATE_ARCHIVE_NAMES = ['Univariate_arff','mts_archive', 'coto_data', 'InlineSkateXPs', 'SITS'] + SITS_DATASETS = ['SatelliteFull_TRAIN_c301', 'SatelliteFull_TRAIN_c200', 'SatelliteFull_TRAIN_c451', 'SatelliteFull_TRAIN_c89', 'SatelliteFull_TRAIN_c677', 'SatelliteFull_TRAIN_c59', @@ -29,6 +29,6 @@ 'InlineSkate-256', 'InlineSkate-512', 'InlineSkate-1024', 'InlineSkate-2048'] -dataset_names_for_archive = {'TSC': UNIVARIATE_DATASET_NAMES, +dataset_names_for_archive = {'Univariate_arff': UNIVARIATE_DATASET_NAMES, 'SITS': SITS_DATASETS, 'InlineSkateXPs': InlineSkateXPs_DATASETS} diff --git a/utils/utils.py b/utils/utils.py index 15bb6f1..12a554d 100755 --- a/utils/utils.py +++ b/utils/utils.py @@ -28,9 +28,11 @@ def check_if_file_exits(file_name): def readucr(filename, delimiter=','): - data = np.loadtxt(filename, delimiter=delimiter) - Y = data[:, 0] - X = data[:, 1:] + data = np.loadtxt(filename) + Y = data[:,0] + X = data[:,1:] + print(X.shape, Y.shape) + print(X[0], Y[0]) return X, Y @@ -56,11 +58,31 @@ def create_directory(directory_path): def read_dataset(root_dir, archive_name, dataset_name): datasets_dict = {} - file_name = root_dir + '/archives/' + archive_name + '/' + dataset_name + '/' + dataset_name - x_train, y_train = readucr(file_name + '_TRAIN') - x_test, y_test = readucr(file_name + '_TEST') - datasets_dict[dataset_name] = (x_train.copy(), y_train.copy(), x_test.copy(), - y_test.copy()) + if archive_name == 'coto_data': + file_name = root_dir+'/archives/'+archive_name+'/'+dataset_name+'/' + x_train = np.load(file_name + 'x_train.npy') + y_train = np.load(file_name + 'y_train.npy') + x_test = np.load(file_name + 'x_test.npy') + y_test = np.load(file_name + 'y_test.npy') + + datasets_dict[dataset_name] = (x_train.copy(), y_train.copy(), x_test.copy(), + y_test.copy()) + elif archive_name == 'mts_archive': + file_name = root_dir+'/archives/'+archive_name+'/'+dataset_name+'/' + x_train = np.load(file_name + 'x_train.npy') + y_train = np.load(file_name + 'y_train.npy') + x_test = np.load(file_name + 'x_test.npy') + y_test = np.load(file_name + 'y_test.npy') + + datasets_dict[dataset_name] = (x_train.copy(), y_train.copy(), x_test.copy(), + y_test.copy()) + + else: + file_name = root_dir + '/archives/' + archive_name + '/' + dataset_name + '/' + dataset_name + x_train, y_train = readucr(file_name + '_TRAIN.txt') + x_test, y_test = readucr(file_name + '_TEST.txt') + datasets_dict[dataset_name] = (x_train.copy(), y_train.copy(), x_test.copy(), + y_test.copy()) return datasets_dict @@ -70,12 +92,12 @@ def read_all_datasets(root_dir, archive_name): dataset_names_to_sort = [] - if archive_name == 'TSC': + if archive_name == 'Univariate_arff': for dataset_name in DATASET_NAMES: root_dir_dataset = root_dir + '/archives/' + archive_name + '/' + dataset_name + '/' file_name = root_dir_dataset + dataset_name - x_train, y_train = readucr(file_name + '_TRAIN') - x_test, y_test = readucr(file_name + '_TEST') + x_train, y_train = readucr(file_name + '_TRAIN.txt') + x_test, y_test = readucr(file_name + '_TEST.txt') datasets_dict[dataset_name] = (x_train.copy(), y_train.copy(), x_test.copy(), y_test.copy())