|
| 1 | +import argparse |
| 2 | +from contextlib import nullcontext |
| 3 | + |
| 4 | +import torch |
| 5 | +import safetensors.torch |
| 6 | +from accelerate import init_empty_weights |
| 7 | +from huggingface_hub import hf_hub_download |
| 8 | + |
| 9 | +from diffusers.utils.import_utils import is_accelerate_available |
| 10 | +from diffusers.models import ZImageTransformer2DModel |
| 11 | +from diffusers.models.controlnets.controlnet_z_image import ZImageControlNetModel |
| 12 | + |
| 13 | +""" |
| 14 | +python scripts/convert_z_image_controlnet_to_diffusers.py \ |
| 15 | +--original_z_image_repo_id "Tongyi-MAI/Z-Image-Turbo" \ |
| 16 | +--original_controlnet_repo_id "alibaba-pai/Z-Image-Turbo-Fun-Controlnet-Union" \ |
| 17 | +--filename "Z-Image-Turbo-Fun-Controlnet-Union.safetensors" |
| 18 | +--output_path "z-image-controlnet-hf/" |
| 19 | +""" |
| 20 | + |
| 21 | + |
| 22 | +CTX = init_empty_weights if is_accelerate_available else nullcontext |
| 23 | + |
| 24 | +parser = argparse.ArgumentParser() |
| 25 | +parser.add_argument("--original_z_image_repo_id", default="Tongyi-MAI/Z-Image-Turbo", type=str) |
| 26 | +parser.add_argument("--original_controlnet_repo_id", default=None, type=str) |
| 27 | +parser.add_argument("--filename", default="Z-Image-Turbo-Fun-Controlnet-Union.safetensors", type=str) |
| 28 | +parser.add_argument("--checkpoint_path", default=None, type=str) |
| 29 | +parser.add_argument("--output_path", type=str) |
| 30 | + |
| 31 | +args = parser.parse_args() |
| 32 | + |
| 33 | + |
| 34 | +def load_original_checkpoint(args): |
| 35 | + if args.original_controlnet_repo_id is not None: |
| 36 | + ckpt_path = hf_hub_download(repo_id=args.original_controlnet_repo_id, filename=args.filename) |
| 37 | + elif args.checkpoint_path is not None: |
| 38 | + ckpt_path = args.checkpoint_path |
| 39 | + else: |
| 40 | + raise ValueError(" please provide either `original_controlnet_repo_id` or a local `checkpoint_path`") |
| 41 | + |
| 42 | + original_state_dict = safetensors.torch.load_file(ckpt_path) |
| 43 | + return original_state_dict |
| 44 | + |
| 45 | +def load_z_image(args): |
| 46 | + model = ZImageTransformer2DModel.from_pretrained(args.original_z_image_repo_id, subfolder="transformer", torch_dtype=torch.bfloat16) |
| 47 | + return model.state_dict(), model.config |
| 48 | + |
| 49 | +def convert_z_image_controlnet_checkpoint_to_diffusers(z_image, original_state_dict): |
| 50 | + converted_state_dict = {} |
| 51 | + |
| 52 | + converted_state_dict.update(original_state_dict) |
| 53 | + |
| 54 | + to_copy = {"all_x_embedder.", "noise_refiner.", "context_refiner.", "t_embedder.", "cap_embedder.", "x_pad_token", "cap_pad_token"} |
| 55 | + |
| 56 | + for key in z_image.keys(): |
| 57 | + for copy_key in to_copy: |
| 58 | + if key.startswith(copy_key): |
| 59 | + converted_state_dict[key] = z_image[key] |
| 60 | + |
| 61 | + return converted_state_dict |
| 62 | + |
| 63 | + |
| 64 | +def main(args): |
| 65 | + original_ckpt = load_original_checkpoint(args) |
| 66 | + z_image, config = load_z_image(args) |
| 67 | + |
| 68 | + control_in_dim = 16 |
| 69 | + control_layers_places = [0, 5, 10, 15, 20, 25] |
| 70 | + |
| 71 | + converted_controlnet_state_dict = convert_z_image_controlnet_checkpoint_to_diffusers(z_image, original_ckpt) |
| 72 | + |
| 73 | + for key, tensor in converted_controlnet_state_dict.items(): |
| 74 | + print(f"{key} - {tensor.dtype}") |
| 75 | + |
| 76 | + controlnet = ZImageControlNetModel( |
| 77 | + all_patch_size=config["all_patch_size"], |
| 78 | + all_f_patch_size=config["all_f_patch_size"], |
| 79 | + in_channels=config["in_channels"], |
| 80 | + dim=config["dim"], |
| 81 | + n_layers=config["n_layers"], |
| 82 | + n_refiner_layers=config["n_refiner_layers"], |
| 83 | + n_heads=config["n_heads"], |
| 84 | + n_kv_heads=config["n_kv_heads"], |
| 85 | + norm_eps=config["norm_eps"], |
| 86 | + qk_norm=config["qk_norm"], |
| 87 | + cap_feat_dim=config["cap_feat_dim"], |
| 88 | + rope_theta=config["rope_theta"], |
| 89 | + t_scale=config["t_scale"], |
| 90 | + axes_dims=config["axes_dims"], |
| 91 | + axes_lens=config["axes_lens"], |
| 92 | + control_layers_places=control_layers_places, |
| 93 | + control_in_dim=control_in_dim, |
| 94 | + ) |
| 95 | + missing, unexpected = controlnet.load_state_dict(converted_controlnet_state_dict) |
| 96 | + print(f"{missing=}") |
| 97 | + print(f"{unexpected=}") |
| 98 | + print("Saving Z-Image ControlNet in Diffusers format") |
| 99 | + controlnet.save_pretrained(args.output_path, max_shard_size="5GB") |
| 100 | + |
| 101 | + |
| 102 | +if __name__ == "__main__": |
| 103 | + main(args) |
0 commit comments