@@ -702,6 +702,7 @@ def __call__(
702702 skip_layer_guidance_scale : int = 2.8 ,
703703 skip_layer_guidance_stop : int = 0.2 ,
704704 skip_layer_guidance_start : int = 0.01 ,
705+ mu : Optional [float ] = None ,
705706 ):
706707 r"""
707708 Function invoked when calling the pipeline for generation.
@@ -802,6 +803,7 @@ def __call__(
802803 `skip_guidance_layers` will start. The guidance will be applied to the layers specified in
803804 `skip_guidance_layers` from the fraction specified in `skip_layer_guidance_start`. Recommended value by
804805 StabiltyAI for Stable Diffusion 3.5 Medium is 0.01.
806+ mu (`float`, *optional*): `mu` value used for `dynamic_shifting`.
805807
806808 Examples:
807809
@@ -882,12 +884,7 @@ def __call__(
882884 prompt_embeds = torch .cat ([negative_prompt_embeds , prompt_embeds ], dim = 0 )
883885 pooled_prompt_embeds = torch .cat ([negative_pooled_prompt_embeds , pooled_prompt_embeds ], dim = 0 )
884886
885- # 4. Prepare timesteps
886- timesteps , num_inference_steps = retrieve_timesteps (self .scheduler , num_inference_steps , device , sigmas = sigmas )
887- num_warmup_steps = max (len (timesteps ) - num_inference_steps * self .scheduler .order , 0 )
888- self ._num_timesteps = len (timesteps )
889-
890- # 5. Prepare latent variables
887+ # 4. Prepare latent variables
891888 num_channels_latents = self .transformer .config .in_channels
892889 latents = self .prepare_latents (
893890 batch_size * num_images_per_prompt ,
@@ -900,6 +897,17 @@ def __call__(
900897 latents ,
901898 )
902899
900+ # 5. Prepare timesteps
901+ timesteps , num_inference_steps = retrieve_timesteps (
902+ self .scheduler ,
903+ num_inference_steps ,
904+ device ,
905+ sigmas = sigmas ,
906+ mu = mu ,
907+ )
908+ num_warmup_steps = max (len (timesteps ) - num_inference_steps * self .scheduler .order , 0 )
909+ self ._num_timesteps = len (timesteps )
910+
903911 # 6. Denoising loop
904912 with self .progress_bar (total = num_inference_steps ) as progress_bar :
905913 for i , t in enumerate (timesteps ):
0 commit comments