Skip to content

Commit adb3bf8

Browse files
committed
idk
1 parent a3ed155 commit adb3bf8

File tree

2 files changed

+4
-11
lines changed

2 files changed

+4
-11
lines changed

src/diffusers/pipelines/flux/pipeline_flux_rfinversion_edit.py

Lines changed: 2 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -580,9 +580,7 @@ def prepare_latents(
580580
else:
581581
image_latents = torch.cat([image_latents], dim=0)
582582

583-
noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
584-
latents = self.scheduler.scale_noise(image_latents, timestep, noise)
585-
latents = self._pack_latents(latents, batch_size, num_channels_latents, height, width)
583+
latents = self._pack_latents(image_latents, batch_size, num_channels_latents, height, width)
586584
return latents, latent_image_ids
587585

588586
@property
@@ -780,9 +778,6 @@ def __call__(
780778
sigmas,
781779
mu=mu,
782780
)
783-
self.scheduler.sigmas = self.scheduler.sigmas.flip(0)
784-
self.scheduler.timesteps = self.scheduler.timesteps.flip(0)
785-
self.scheduler.sigmas[0] += 1e-6
786781
print(f"self.scheduler.sigmas {self.scheduler.sigmas}")
787782
print(f"self.scheduler.timesteps {self.scheduler.timesteps}")
788783
timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength, device)
@@ -866,7 +861,7 @@ def __call__(
866861
# compute the previous noisy sample x_t -> x_t-1
867862
latents_dtype = latents.dtype
868863
# Next state: $X_{t_{i+1}} = X_{t_i} + \hat{v}_{t_i}(X_{t_i}) \cdot (\sigma(t_{i+1}) - \sigma(t_i))$
869-
latents = latents + controlled_vector_field * (self.scheduler.sigmas[i+1] - self.scheduler.sigmas[i])
864+
latents = latents + controlled_vector_field * (sigmas[i] - sigmas[i+1])
870865

871866
if latents.dtype != latents_dtype:
872867
if torch.backends.mps.is_available():

src/diffusers/pipelines/flux/pipeline_flux_rfinversion_noise.py

Lines changed: 2 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -550,9 +550,7 @@ def prepare_latents(
550550
else:
551551
image_latents = torch.cat([image_latents], dim=0)
552552

553-
noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
554-
latents = self.scheduler.scale_noise(image_latents, timestep, noise)
555-
latents = self._pack_latents(latents, batch_size, num_channels_latents, height, width)
553+
latents = self._pack_latents(image_latents, batch_size, num_channels_latents, height, width)
556554
return latents, latent_image_ids
557555

558556
@property
@@ -855,7 +853,7 @@ def __call__(
855853

856854
latents_dtype = latents.dtype
857855
# Next state: $Y_{t_{i+1}} = Y_{t_i} + \hat{u}_{t_i}(Y_{t_i}) \cdot (\sigma(t_{i+1}) - \sigma(t_i))$
858-
latents = latents + controlled_vector_field * (self.scheduler.sigmas[i] - self.scheduler.sigmas[i+1])
856+
latents = latents + controlled_vector_field * (self.scheduler.sigmas[i+1] - self.scheduler.sigmas[i])
859857

860858
if latents.dtype != latents_dtype:
861859
if torch.backends.mps.is_available():

0 commit comments

Comments
 (0)