Skip to content

Commit fc3f904

Browse files
committed
Create README - LeetHub
1 parent f969922 commit fc3f904

File tree

1 file changed

+56
-0
lines changed
  • 2607-minimum-subarrays-in-a-valid-split

1 file changed

+56
-0
lines changed
Lines changed: 56 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,56 @@
1+
<h2><a href="https://leetcode.com/problems/minimum-subarrays-in-a-valid-split">2607. Minimum Subarrays in a Valid Split</a></h2><h3>Medium</h3><hr><p>You are given an integer array <code>nums</code>.</p>
2+
3+
<p>Splitting of an integer array <code>nums</code> into <strong>subarrays</strong> is <strong>valid</strong> if:</p>
4+
5+
<ul>
6+
<li>the <em>greatest common divisor</em> of the first and last elements of each subarray is <strong>greater</strong> than <code>1</code>, and</li>
7+
<li>each element of <code>nums</code> belongs to exactly one subarray.</li>
8+
</ul>
9+
10+
<p>Return <em>the <strong>minimum</strong> number of subarrays in a <strong>valid</strong> subarray splitting of</em> <code>nums</code>. If a valid subarray splitting is not possible, return <code>-1</code>.</p>
11+
12+
<p><strong>Note</strong> that:</p>
13+
14+
<ul>
15+
<li>The <strong>greatest common divisor</strong> of two numbers is the largest positive integer that evenly divides both numbers.</li>
16+
<li>A <strong>subarray</strong> is a contiguous non-empty part of an array.</li>
17+
</ul>
18+
19+
<p>&nbsp;</p>
20+
<p><strong class="example">Example 1:</strong></p>
21+
22+
<pre>
23+
<strong>Input:</strong> nums = [2,6,3,4,3]
24+
<strong>Output:</strong> 2
25+
<strong>Explanation:</strong> We can create a valid split in the following way: [2,6] | [3,4,3].
26+
- The starting element of the 1<sup>st</sup> subarray is 2 and the ending is 6. Their greatest common divisor is 2, which is greater than 1.
27+
- The starting element of the 2<sup>nd</sup> subarray is 3 and the ending is 3. Their greatest common divisor is 3, which is greater than 1.
28+
It can be proved that 2 is the minimum number of subarrays that we can obtain in a valid split.
29+
</pre>
30+
31+
<p><strong class="example">Example 2:</strong></p>
32+
33+
<pre>
34+
<strong>Input:</strong> nums = [3,5]
35+
<strong>Output:</strong> 2
36+
<strong>Explanation:</strong> We can create a valid split in the following way: [3] | [5].
37+
- The starting element of the 1<sup>st</sup> subarray is 3 and the ending is 3. Their greatest common divisor is 3, which is greater than 1.
38+
- The starting element of the 2<sup>nd</sup> subarray is 5 and the ending is 5. Their greatest common divisor is 5, which is greater than 1.
39+
It can be proved that 2 is the minimum number of subarrays that we can obtain in a valid split.
40+
</pre>
41+
42+
<p><strong class="example">Example 3:</strong></p>
43+
44+
<pre>
45+
<strong>Input:</strong> nums = [1,2,1]
46+
<strong>Output:</strong> -1
47+
<strong>Explanation:</strong> It is impossible to create valid split.
48+
</pre>
49+
50+
<p>&nbsp;</p>
51+
<p><strong>Constraints:</strong></p>
52+
53+
<ul>
54+
<li><code>1 &lt;= nums.length &lt;= 1000</code></li>
55+
<li><code>1 &lt;= nums[i] &lt;= 10<sup>5</sup></code></li>
56+
</ul>

0 commit comments

Comments
 (0)