|
10 | 10 | parser = argparse.ArgumentParser()
|
11 | 11 | parser.add_argument("-m", "--model", type=str, default="Qwen/Qwen2.5-7B")
|
12 | 12 | parser.add_argument("-d", "--dataset", type=str, default="data.jsonl")
|
13 |
| - parser.add_argument("-p", "--project", type=str, default="GRPO-V3", help="Project name.") |
| 13 | + parser.add_argument( |
| 14 | + "-ed", |
| 15 | + "--eval-dataset", |
| 16 | + type=str, |
| 17 | + default=None, |
| 18 | + help="Evaluation dataset for each task, please use json format to specify the dataset for each task. \ |
| 19 | + For example: {'task1':'data_eval_task1.jsonl', 'task2':'data_eval_task2.jsonl'}, the jsonl file should be in the same format as the training dataset. \ |
| 20 | + The key is the task name, and the value is the path to the jsonl file", |
| 21 | + ) |
| 22 | + parser.add_argument("-p", "--project", type=str, default="GRPO", help="Project name.") |
14 | 23 | parser.add_argument("-e", "--num-episodes", type=int, default=1, help="Number of episodes to train.")
|
15 | 24 |
|
16 | 25 | # Distributed training parameters
|
|
301 | 310 | project_name=args.project,
|
302 | 311 | save_interval=args.save_interval,
|
303 | 312 | save_dir=os.path.join(args.save_dir, args.project.replace(" ", "_")),
|
304 |
| - eval_dataset_config={ |
305 |
| - k: {"path": v, "max_length": args.max_prompt_tokens, "system_prompt": args.system_prompt} |
306 |
| - for k, v in json.loads(args.eval_dataset).items() |
307 |
| - }, |
| 313 | + eval_dataset_config=( |
| 314 | + { |
| 315 | + k: {"path": v, "max_length": args.max_prompt_tokens, "system_prompt": args.system_prompt} |
| 316 | + for k, v in json.loads(args.eval_dataset).items() |
| 317 | + } |
| 318 | + if args.eval_dataset |
| 319 | + else None |
| 320 | + ), |
308 | 321 | eval_interval=args.eval_interval,
|
309 | 322 | eval_save_dir=os.path.join(args.eval_save_dir, args.project.replace(" ", "_")),
|
310 | 323 | eval_generation_config=eval_generation_config,
|
|
0 commit comments