|
| 1 | +import torch |
| 2 | +import torch.distributed as dist |
| 3 | +from coati.dataset.loader import RawConversationDataset |
| 4 | +from torch.utils.data import Dataset |
| 5 | +from tqdm import tqdm |
| 6 | +from transformers import AutoTokenizer, Qwen2ForCausalLM |
| 7 | + |
| 8 | +import colossalai |
| 9 | +from colossalai.accelerator import get_accelerator |
| 10 | +from colossalai.booster import Booster |
| 11 | +from colossalai.booster.plugin import HybridParallelPlugin, Plugin |
| 12 | +from colossalai.cluster import DistCoordinator |
| 13 | +from colossalai.nn.optimizer import HybridAdam |
| 14 | + |
| 15 | +# 定义训练参数 |
| 16 | +BATCH_SIZE = 8 |
| 17 | +NUM_EPOCHS = 3 |
| 18 | +LEARNING_RATE = 2e-5 |
| 19 | +GRADIENT_ACCUMULATION_STEPS = 1 |
| 20 | +DATA_PATH = "/home/duanjunwen/datasets/math_dataset.jsonl" |
| 21 | +Device = torch.device("npu" if torch.npu.is_available() else "cpu") |
| 22 | + |
| 23 | + |
| 24 | +class RandomDataset(Dataset): |
| 25 | + def __init__(self, num_samples, sequence_length, vocab_size=10000): |
| 26 | + self.num_samples = num_samples |
| 27 | + self.sequence_length = sequence_length |
| 28 | + self.vocab_size = vocab_size |
| 29 | + self.input_idx = torch.randint(0, vocab_size, (num_samples, sequence_length)) |
| 30 | + self.attention_mask = torch.randint(0, 2, (num_samples, sequence_length), dtype=torch.long) |
| 31 | + |
| 32 | + def __len__(self): |
| 33 | + return self.num_samples |
| 34 | + |
| 35 | + def __getitem__(self, idx): |
| 36 | + return {"input_ids": self.input_idx[idx], "attention_mask": self.attention_mask[idx]} |
| 37 | + |
| 38 | + |
| 39 | +def load_model_and_tokenizer(): |
| 40 | + attn_impl = "eager" if get_accelerator().name == "npu" else "flash_attention_2" |
| 41 | + tokenizer = AutoTokenizer.from_pretrained( |
| 42 | + "/home/duanjunwen/models/Qwen/Qwen2.5-3B", |
| 43 | + trust_remote_code=True, |
| 44 | + attn_implementation=attn_impl, |
| 45 | + ) |
| 46 | + model = Qwen2ForCausalLM.from_pretrained("/home/duanjunwen/models/Qwen/Qwen2.5-3B", trust_remote_code=True) |
| 47 | + return tokenizer, model |
| 48 | + |
| 49 | + |
| 50 | +def all_reduce_mean(loss: torch.Tensor, plugin: Plugin) -> torch.Tensor: |
| 51 | + loss = loss.data |
| 52 | + group = getattr(plugin, "dp_group", None) |
| 53 | + dist.all_reduce(loss, group=group) |
| 54 | + return loss / dist.get_world_size(group) |
| 55 | + |
| 56 | + |
| 57 | +# def train(model, dataloader, booster, optimizer): |
| 58 | +# model.train() |
| 59 | + |
| 60 | +# for epoch in range(NUM_EPOCHS): |
| 61 | +# if booster.plugin.pp_size > 1: |
| 62 | +# data_iter = iter(dataloader) |
| 63 | +# step_bar = tqdm( |
| 64 | +# range(len(dataloader)), |
| 65 | +# desc="Step", |
| 66 | +# disable=not is_master(), |
| 67 | +# ) |
| 68 | +# else: |
| 69 | +# total_loss = 0 |
| 70 | +# for step, batch in enumerate(dataloader): |
| 71 | +# input_ids = batch["input_ids"].to(device=model.module.device) |
| 72 | +# attention_mask = batch["attention_mask"].to(device=model.module.device) |
| 73 | +# outputs = model(input_ids=input_ids, attention_mask=attention_mask, labels=input_ids) |
| 74 | +# loss = outputs.loss |
| 75 | +# print(f"loss {loss} outputs {outputs}") |
| 76 | +# loss = loss / GRADIENT_ACCUMULATION_STEPS |
| 77 | +# booster.backward(loss, optimizer) |
| 78 | + |
| 79 | +# if (step + 1) % GRADIENT_ACCUMULATION_STEPS == 0: |
| 80 | +# optimizer.step() |
| 81 | +# optimizer.zero_grad() |
| 82 | + |
| 83 | +# total_loss += loss.item() |
| 84 | + |
| 85 | +# print(f"Epoch {epoch + 1}, Loss: {total_loss / len(dataloader)}") |
| 86 | + |
| 87 | + |
| 88 | +def test_hybrid_qwen(): |
| 89 | + colossalai.launch_from_torch() |
| 90 | + get_accelerator() |
| 91 | + coordinator = DistCoordinator() |
| 92 | + tokenizer, model = load_model_and_tokenizer() |
| 93 | + # dataset = RandomDataset(num_samples=100, sequence_length=2304) |
| 94 | + dataset = RawConversationDataset(tokenizer, DATA_PATH, 1024) |
| 95 | + # dataloader = DataLoader(dataset, batch_size=BATCH_SIZE, shuffle=True) |
| 96 | + |
| 97 | + optimizer = HybridAdam(model.parameters(), lr=LEARNING_RATE) |
| 98 | + plugin = HybridParallelPlugin(tp_size=2, pp_size=1, precision="bf16", zero_stage=2) |
| 99 | + # plugin = HybridParallelPlugin(tp_size=2, pp_size=2, precision="bf16", zero_stage=1, num_microbatches=4, enable_flash_attention=True) |
| 100 | + |
| 101 | + dataloader = plugin.prepare_dataloader( |
| 102 | + dataset=dataset, |
| 103 | + batch_size=BATCH_SIZE, |
| 104 | + shuffle=True, |
| 105 | + drop_last=True, |
| 106 | + ) |
| 107 | + |
| 108 | + booster = Booster(plugin=plugin) |
| 109 | + |
| 110 | + model, optimizer, _, dataloader, _ = booster.boost(model, optimizer, None, dataloader) |
| 111 | + |
| 112 | + def is_master(): |
| 113 | + if isinstance(plugin, HybridParallelPlugin) and plugin.pp_size > 1: |
| 114 | + return coordinator.rank == coordinator.world_size - 1 |
| 115 | + return coordinator.is_master() |
| 116 | + |
| 117 | + ##### |
| 118 | + # train |
| 119 | + ##### |
| 120 | + model.train() |
| 121 | + |
| 122 | + for epoch in range(NUM_EPOCHS): |
| 123 | + if booster.plugin.pp_size > 1: |
| 124 | + data_iter = iter(dataloader) |
| 125 | + step_bar = tqdm( |
| 126 | + range(len(dataloader)), |
| 127 | + desc="Step", |
| 128 | + disable=not is_master(), |
| 129 | + ) |
| 130 | + for step in step_bar: |
| 131 | + print(f"data_iter {data_iter}") |
| 132 | + outputs = booster.execute_pipeline( |
| 133 | + data_iter, |
| 134 | + model, |
| 135 | + criterion=lambda outputs, inputs: outputs[0], |
| 136 | + optimizer=optimizer, |
| 137 | + return_loss=True, |
| 138 | + ) |
| 139 | + loss = outputs["loss"] |
| 140 | + if booster.plugin.stage_manager.is_last_stage(): |
| 141 | + global_loss = all_reduce_mean(loss, plugin) |
| 142 | + |
| 143 | + optimizer.step() |
| 144 | + |
| 145 | + if booster.plugin.stage_manager.is_last_stage(): |
| 146 | + grad_norm = optimizer.get_grad_norm() |
| 147 | + step_bar.set_postfix({"loss": global_loss.item(), "grad_norm": grad_norm}) |
| 148 | + |
| 149 | + optimizer.step() |
| 150 | + optimizer.zero_grad() |
| 151 | + else: |
| 152 | + total_loss = 0 |
| 153 | + for step, batch in enumerate(dataloader): |
| 154 | + input_ids = batch["input_ids"].to(device=model.module.device) |
| 155 | + attention_mask = batch["attention_mask"].to(device=model.module.device) |
| 156 | + outputs = model(input_ids=input_ids, attention_mask=attention_mask, labels=input_ids) |
| 157 | + loss = outputs.loss |
| 158 | + print(f"loss {loss} outputs {outputs}") |
| 159 | + loss = loss / GRADIENT_ACCUMULATION_STEPS |
| 160 | + booster.backward(loss, optimizer) |
| 161 | + |
| 162 | + if (step + 1) % GRADIENT_ACCUMULATION_STEPS == 0: |
| 163 | + optimizer.step() |
| 164 | + optimizer.zero_grad() |
| 165 | + |
| 166 | + total_loss += loss.item() |
| 167 | + |
| 168 | + print(f"Epoch {epoch + 1}, Loss: {total_loss / len(dataloader)}") |
| 169 | + |
| 170 | + |
| 171 | +if __name__ == "__main__": |
| 172 | + test_hybrid_qwen() |
0 commit comments