|
1 | 1 | import copy
|
| 2 | +import time |
2 | 3 | from typing import Any, Dict
|
3 | 4 |
|
4 | 5 | import ray
|
5 | 6 | import ray.util.collective as cc
|
6 | 7 | import torch
|
7 | 8 | import torch.distributed.distributed_c10d as c10d
|
| 9 | +from coati.distributed.profiling_utils import CustomProfiler |
8 | 10 | from packaging.version import Version
|
9 | 11 |
|
| 12 | +from colossalai.utils import get_current_device |
| 13 | + |
10 | 14 |
|
11 | 15 | def ray_broadcast_object(obj: Any, src: int = 0, device=None, group_name: str = "default") -> Any:
|
12 | 16 | rank = cc.get_rank(group_name)
|
@@ -71,46 +75,157 @@ def ray_broadcast_tensor_dict(
|
71 | 75 |
|
72 | 76 | @ray.remote
|
73 | 77 | class SharedVariableActor:
|
74 |
| - def __init__(self): |
75 |
| - # double queues |
76 |
| - self.data_queue = None |
77 |
| - self.data_queue_buffered = None |
| 78 | + def __init__(self, number_of_readers: int = 1): |
| 79 | + self.data_queue = [] |
78 | 80 | self.model_weights = None
|
79 | 81 | self.data_access_count = 0
|
80 | 82 | self.ready_process_count = {}
|
| 83 | + self.number_of_readers = number_of_readers |
| 84 | + self.consumer_buffer_size = 0 |
| 85 | + self.signals = {} |
81 | 86 |
|
82 |
| - def increase_ready_process_count(self, name): |
83 |
| - self.ready_process_count = {k: v for k, v in self.ready_process_count.items() if k > name - 5} |
84 |
| - if name not in self.ready_process_count: |
85 |
| - self.ready_process_count[name] = 0 |
86 |
| - self.ready_process_count[name] += 1 |
87 |
| - |
88 |
| - def get_ready_process_count(self, name): |
89 |
| - return self.ready_process_count[name] |
90 |
| - |
91 |
| - def extend_data(self, data): |
92 |
| - if self.data_access_count > 0: |
93 |
| - # update the buffered data if data is not being accessed by all consumers |
94 |
| - # if producer are too fast, will not overwrite the data but extend the data |
95 |
| - if self.data_queue_buffered is None: |
96 |
| - self.data_queue_buffered = [] |
97 |
| - self.data_queue_buffered.extend(data) |
98 |
| - return True |
99 |
| - if self.data_queue is None: |
100 |
| - self.data_queue = [] |
101 |
| - self.data_queue.extend(data) |
102 |
| - self.data_access_count = 0 |
| 87 | + def get_queued_data_size(self): |
| 88 | + queued_data_size = sum([data["input_ids"].size(0) for data in self.data_queue]) |
| 89 | + return queued_data_size |
| 90 | + |
| 91 | + def append_data(self, data): |
| 92 | + self.data_queue.append(data) |
103 | 93 | return True
|
104 | 94 |
|
105 | 95 | def get_data(self):
|
106 |
| - if self.data_queue is None: |
| 96 | + if not self.data_queue: |
| 97 | + # no data in the queue, return None |
107 | 98 | return None
|
108 |
| - data = copy.deepcopy(self.data_queue) |
| 99 | + data = copy.deepcopy(self.data_queue[0]) |
109 | 100 | self.data_access_count += 1
|
110 |
| - if self.data_access_count == 4: |
111 |
| - # data in data_queue has been accessed by all consumers |
112 |
| - # swap the data queue with the buffered data, erase the old data |
113 |
| - if self.data_queue_buffered is not None: |
114 |
| - self.data_queue = self.data_queue_buffered |
115 |
| - self.data_queue_buffered = None |
| 101 | + if self.data_access_count == self.number_of_readers: |
| 102 | + # first data in data_queue has been accessed by all consumers |
| 103 | + # remove it from the queue |
| 104 | + self.data_queue.pop(0) |
| 105 | + self.data_access_count = 0 |
116 | 106 | return data
|
| 107 | + |
| 108 | + def set_signal(self, key: str, signal: str): |
| 109 | + self.signals[key] = signal |
| 110 | + |
| 111 | + def get_signal(self): |
| 112 | + return self.signals |
| 113 | + |
| 114 | + |
| 115 | +@ray.remote |
| 116 | +class SharedVariableActorNCCL: |
| 117 | + def __init__( |
| 118 | + self, consumer_pp_size, num_producers, shared_signal_actor: SharedVariableActor, enable_profiling: bool = True |
| 119 | + ): |
| 120 | + self.consumer_pp_size = consumer_pp_size |
| 121 | + self.state_dict_cpu = {i: {"not_ready_sync_model": torch.ones((1)).cpu()} for i in range(self.consumer_pp_size)} |
| 122 | + self.num_producers = num_producers |
| 123 | + self.shared_signal_actor = shared_signal_actor |
| 124 | + self.device = get_current_device() |
| 125 | + self.profiler = CustomProfiler(f"D", disabled=not enable_profiling) |
| 126 | + self.weight_version = {i: 0 for i in range(self.consumer_pp_size)} |
| 127 | + self.producer_weight_version = { |
| 128 | + j: {f"producer_{i}": 0 for i in range(self.num_producers)} for j in range(self.consumer_pp_size) |
| 129 | + } |
| 130 | + |
| 131 | + def setup(self): |
| 132 | + if self.consumer_pp_size == 1: |
| 133 | + cc.init_collective_group(2, 1, group_name="sync_model_consumer") |
| 134 | + for i in range(self.num_producers): |
| 135 | + cc.init_collective_group(2, 1, group_name=f"sync_model_producer_{i}") |
| 136 | + else: |
| 137 | + for i in range(self.consumer_pp_size): |
| 138 | + cc.init_collective_group(2, 1, group_name=f"sync_model_consumer_pp_{i}") |
| 139 | + for i in range(self.num_producers): |
| 140 | + for j in range(self.consumer_pp_size): |
| 141 | + cc.init_collective_group(2, 1, group_name=f"sync_model_producer_{i}_pp_{j}") |
| 142 | + |
| 143 | + def loop(self): |
| 144 | + while True: |
| 145 | + time.sleep(1) |
| 146 | + signal = ray.get(self.shared_signal_actor.get_signal.remote()) |
| 147 | + if self.consumer_pp_size > 1: |
| 148 | + for i in range(self.consumer_pp_size): |
| 149 | + if signal.get(f"consumer_pp_{i}", None) == "ready_sync_model": |
| 150 | + self.profiler.enter(f"sync_model_consumer_pp_{i}") |
| 151 | + ray.get(self.shared_signal_actor.set_signal.remote(f"consumer_pp_{i}", "not_ready_sync_model")) |
| 152 | + # Broadcast the model state dict from consumer to shared variable actor |
| 153 | + self.state_dict_cpu[i] = ray_broadcast_tensor_dict( |
| 154 | + None, |
| 155 | + 0, |
| 156 | + device=self.device, |
| 157 | + group_name=f"sync_model_consumer_pp_{i}", |
| 158 | + offload_to_cpu=True, |
| 159 | + ) |
| 160 | + self.profiler.exit(f"sync_model_consumer_pp_{i}") |
| 161 | + self.weight_version[i] += 1 |
| 162 | + for j in range(self.num_producers): |
| 163 | + for i in range(self.consumer_pp_size): |
| 164 | + if signal.get(f"producer_{j}_pp_{i}", None) == "ready_sync_model": |
| 165 | + self.profiler.enter(f"sync_model_producer_{j}_pp_{i}") |
| 166 | + # Broadcast the model state dict to all producers |
| 167 | + ray.get( |
| 168 | + self.shared_signal_actor.set_signal.remote( |
| 169 | + f"producer_{j}_pp_{i}", "not_ready_sync_model" |
| 170 | + ) |
| 171 | + ) |
| 172 | + if self.producer_weight_version[i][f"producer_{j}"] < self.weight_version[i]: |
| 173 | + self.producer_weight_version[i][f"producer_{j}"] = self.weight_version[i] |
| 174 | + ray_broadcast_tensor_dict( |
| 175 | + self.state_dict_cpu[i], |
| 176 | + 1, |
| 177 | + device=self.device, |
| 178 | + group_name=f"sync_model_producer_{j}_pp_{i}", |
| 179 | + offload_to_cpu=True, |
| 180 | + ) |
| 181 | + else: |
| 182 | + # broadcast a dummy tensor to save the communication cost |
| 183 | + ray_broadcast_tensor_dict( |
| 184 | + {"not_ready_sync_model": torch.ones((1)).cpu()}, |
| 185 | + 1, |
| 186 | + device=self.device, |
| 187 | + group_name=f"sync_model_producer_{j}_pp_{i}", |
| 188 | + offload_to_cpu=True, |
| 189 | + ) |
| 190 | + self.profiler.exit(f"sync_model_producer_{j}_pp_{i}") |
| 191 | + else: |
| 192 | + if signal.get("consumer", None) == "ready_sync_model": |
| 193 | + self.profiler.enter("sync_model_consumer") |
| 194 | + ray.get(self.shared_signal_actor.set_signal.remote("consumer", "not_ready_sync_model")) |
| 195 | + # Broadcast the model state dict from consumer to shared variable actor |
| 196 | + self.state_dict_cpu = ray_broadcast_tensor_dict( |
| 197 | + None, |
| 198 | + 0, |
| 199 | + device=self.device, |
| 200 | + group_name="sync_model_consumer", |
| 201 | + offload_to_cpu=True, |
| 202 | + ) |
| 203 | + self.profiler.exit("sync_model_consumer") |
| 204 | + self.weight_version[0] += 1 |
| 205 | + for i in range(self.num_producers): |
| 206 | + if signal.get(f"producer_{i}", None) == "ready_sync_model": |
| 207 | + self.profiler.enter(f"sync_model_producer_{i}") |
| 208 | + # Broadcast the model state dict to all producers |
| 209 | + ray.get(self.shared_signal_actor.set_signal.remote(f"producer_{i}", "not_ready_sync_model")) |
| 210 | + if self.producer_weight_version[0][f"producer_{i}"] < self.weight_version[0]: |
| 211 | + self.producer_weight_version[0][f"producer_{i}"] = self.weight_version[0] |
| 212 | + ray_broadcast_tensor_dict( |
| 213 | + self.state_dict_cpu, |
| 214 | + 1, |
| 215 | + device=self.device, |
| 216 | + group_name=f"sync_model_producer_{i}", |
| 217 | + offload_to_cpu=True, |
| 218 | + ) |
| 219 | + else: |
| 220 | + # broadcast a dummy tensor to save the communication cost |
| 221 | + ray_broadcast_tensor_dict( |
| 222 | + {"not_ready_sync_model": torch.ones((1)).cpu()}, |
| 223 | + 1, |
| 224 | + device=self.device, |
| 225 | + group_name=f"sync_model_producer_{i}", |
| 226 | + offload_to_cpu=True, |
| 227 | + ) |
| 228 | + self.profiler.exit(f"sync_model_producer_{i}") |
| 229 | + if signal.get("consumer", None) == "terminate": |
| 230 | + self.profiler.log("terminate sync model worker") |
| 231 | + break |
0 commit comments