Skip to content

Commit dd49444

Browse files
authored
Merge pull request #6348 from hpcaitech/grpo_optimization
[Feat] optimize pp log_softmax memory usage
2 parents 0e69b98 + 6b06430 commit dd49444

File tree

3 files changed

+41
-29
lines changed

3 files changed

+41
-29
lines changed

.gitignore

Lines changed: 2 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -171,3 +171,5 @@ applications/ColossalChat/*.txt
171171
applications/ColossalChat/*.db
172172
applications/ColossalChat/stdin
173173
applications/ColossalChat/*.zip
174+
applications/ColossalChat/*.prof
175+
applications/ColossalChat/*.png

applications/ColossalChat/coati/distributed/grpo_consumer.py

Lines changed: 10 additions & 12 deletions
Original file line numberDiff line numberDiff line change
@@ -6,7 +6,7 @@
66
import wandb
77
from coati.distributed.consumer import BaseConsumer
88
from coati.distributed.loss import PolicyLoss
9-
from coati.distributed.utils import calc_action_log_probs
9+
from coati.distributed.utils import memory_efficient_logprob
1010
from coati.trainer.utils import all_reduce_mean, all_reduce_sum
1111
from transformers import AutoModelForCausalLM, AutoTokenizer
1212

@@ -280,12 +280,11 @@ def step(self, step_idx: int, pbar: Any, **kwargs) -> Optional[float]:
280280
)
281281

282282
if self.booster.plugin.stage_manager.is_last_stage():
283-
reference_model_logits = reference_model_outputs["outputs"]["logits"]
284-
reference_action_log_probs = calc_action_log_probs(
285-
reference_model_logits / self.generate_config["temperature"],
283+
reference_action_log_probs = memory_efficient_logprob(
284+
reference_model_outputs["outputs"]["logits"] / self.generate_config["temperature"],
286285
input_ids_forward_micro_batch,
287286
num_action,
288-
self.plugin.shard_config,
287+
shard_config=self.plugin.shard_config,
289288
)
290289
else:
291290
# Dummy reference logprobs for data iterator.
@@ -308,11 +307,11 @@ def step(self, step_idx: int, pbar: Any, **kwargs) -> Optional[float]:
308307

309308
def _criterion(outputs, inputs):
310309
action_logits = outputs.logits
311-
action_log_probs = calc_action_log_probs(
310+
action_log_probs = memory_efficient_logprob(
312311
action_logits / self.generate_config["temperature"],
313312
inputs["input_ids"],
314313
num_action,
315-
self.plugin.shard_config,
314+
shard_config=self.plugin.shard_config,
316315
)
317316
if "reference_action_log_probs" in inputs:
318317
per_token_kl = (
@@ -355,16 +354,15 @@ def _criterion(outputs, inputs):
355354
mean_kl.append(kl)
356355
mean_loss.append(all_reduce_mean(loss, self.plugin).data)
357356
else:
358-
359357
policy_model_logits = self.policy_model(
360358
input_ids=input_ids_forward_micro_batch,
361359
attention_mask=attention_mask_forward_micro_batch,
362360
).logits
363-
action_log_probs = calc_action_log_probs(
361+
action_log_probs = memory_efficient_logprob(
364362
policy_model_logits / self.generate_config["temperature"],
365363
input_ids_forward_micro_batch,
366364
num_action,
367-
self.plugin.shard_config,
365+
shard_config=self.plugin.shard_config,
368366
)
369367

370368
if self.policy_loss_fn.beta > 0:
@@ -373,11 +371,11 @@ def _criterion(outputs, inputs):
373371
input_ids=input_ids_forward_micro_batch,
374372
attention_mask=attention_mask_forward_micro_batch,
375373
).logits
376-
reference_action_log_probs = calc_action_log_probs(
374+
reference_action_log_probs = memory_efficient_logprob(
377375
reference_model_logits / self.generate_config["temperature"],
378376
input_ids_forward_micro_batch,
379377
num_action,
380-
self.plugin.shard_config,
378+
shard_config=self.plugin.shard_config,
381379
)
382380
per_token_kl = (
383381
torch.exp(reference_action_log_probs - action_log_probs)

applications/ColossalChat/coati/distributed/utils.py

Lines changed: 29 additions & 17 deletions
Original file line numberDiff line numberDiff line change
@@ -71,31 +71,43 @@ def log_probs_from_logits(logits: torch.Tensor, labels: torch.Tensor) -> torch.T
7171
return per_label_logps.squeeze(-1)
7272

7373

74-
def calc_action_log_probs(
74+
def memory_efficient_logprob(
7575
logits: torch.Tensor,
76-
sequences: torch.LongTensor,
77-
num_actions: int,
78-
shard_config,
76+
inputs: torch.Tensor,
77+
num_action: int,
78+
chunk_size: int = 2048,
79+
shard_config: Any = None,
7980
vocab_size: int = None,
8081
) -> torch.Tensor:
81-
"""Calculate action log probs.
82-
82+
"""
83+
Calculate action log probs in a memory-efficient way by processing in chunks.
8384
Args:
8485
logits (torch.Tensor): Output tensor of Actor.forward.logits.
85-
sequences (torch.LongTensor): Input sequences.
86-
num_actions (int): Number of actions.
87-
shard_config
88-
vocab_size
89-
90-
86+
inputs (torch.LongTensor): Input sequences.
87+
num_action (int): Number of actions.
88+
chunk_size (int, optional): Size of each chunk to process. Default is 2048.
89+
shard_config: Shard configuration for distributed computation.
90+
vocab_size (int, optional): Vocabulary size. Default is None.
9191
Returns:
9292
torch.Tensor: Action log probs.
9393
"""
94-
# labels: torch.Tensor, # [B, S] or [B, S, Vocab_size]
95-
# logits: torch.Tensor, # [B, S, Vocab_size]
96-
log_probs = dist_log_prob(sequences, logits, shard_config, vocab_size, logits.dtype)
97-
log_probs = log_probs.squeeze(-1)
98-
return log_probs[:, -num_actions:]
94+
action_log_probs = torch.zeros((logits.size(0), num_action), device=logits.device, dtype=logits.dtype)
95+
context_length = logits.size(1) - num_action
96+
for i in range(action_log_probs.size(0)):
97+
# loop over each sample in the micro-batch
98+
for start in range(context_length, logits.size(1), chunk_size):
99+
end = min(start + chunk_size, logits.size(1))
100+
# calculate log probs in chunks to save memory
101+
log_probs = dist_log_prob(
102+
inputs[i : i + 1, start - 1 : end],
103+
logits[i : i + 1, start - 1 : end],
104+
shard_config,
105+
vocab_size,
106+
logits.dtype,
107+
) # [1, chunk_size, 1]
108+
log_probs = log_probs.squeeze(-1)
109+
action_log_probs[i, start - context_length : end - context_length] += log_probs[0]
110+
return action_log_probs
99111

100112

101113
def masked_mean(tensor: torch.Tensor, mask: torch.Tensor, dim: int = 1) -> torch.Tensor:

0 commit comments

Comments
 (0)