Skip to content

Commit d8d9148

Browse files
committed
Create Blog “part-5-agentic-ai-team-coordination-mode-in-action”
1 parent d106316 commit d8d9148

File tree

3 files changed

+234
-0
lines changed

3 files changed

+234
-0
lines changed
Lines changed: 234 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,234 @@
1+
---
2+
title: "Part 5: Agentic AI: Team Coordination Mode in Action"
3+
date: 2025-07-21T07:24:24.522Z
4+
author: Dinesh R Singh
5+
authorimage: /img/dinesh-192-192.jpg
6+
disable: false
7+
---
8+
9+
10+
One of the most transformative patterns in Agentic AI is team-based orchestration — a collaborative approach where specialized agents work together to fulfill complex goals. In this edition, we explore Coordinate Mode using the AGNO Framework — a design where a Team Manager delegates, supervises, and integrates the contributions of each agent.
11+
12+
Inspired by a Medium post by Dinesh R
13+
14+
![](/img/screenshot-2025-07-21-at-12.57.22 pm.png)
15+
16+
## What Are Agentic AI Teams?
17+
18+
An Agentic Team is a structured collection of AI agents, each performing a specific role with autonomy and tool access. Teams can include roles like:
19+
20+
* Researcher: Finds and filters relevant data
21+
* Writer: Synthesizes content with tone and structure
22+
* Translator: Converts content across languages
23+
* Planner: Organizes execution based on goals
24+
25+
In Coordinate Mode:
26+
27+
* A Team Manager Agent directs the flow of tasks
28+
* Individual agents handle sub-tasks independently
29+
* Final results are reviewed, refined, and unified by the manager
30+
31+
- - -
32+
33+
AGNO Framework: Coordinating a Multi-Agent Content Team
34+
35+
Let’s examine a professional-grade configuration of a New York Times-style editorial team, where search, writing, and editorial review are handled by distinct agents.
36+
37+
Imports
38+
39+
from agno.agent import Agent
40+
41+
from agno.models.openai import OpenAIChat
42+
43+
from agno.team.team import Team
44+
45+
from agno.tools.search import DuckDuckGoTools
46+
47+
from agno.tools.read import Newspaper4kTools
48+
49+
- - -
50+
51+
Searcher Agent
52+
53+
searcher = Agent(
54+
55+
name="Searcher",
56+
57+
role="Searches the top URLs for a topic",
58+
59+
instructions=[
60+
61+
     "Generate 3 search terms for a topic.",
62+
63+
     "Search the web and return 10 high-quality, relevant URLs.",
64+
65+
     "Prioritize credible sources, suitable for the New York Times."
66+
67+
],
68+
69+
tools=\[DuckDuckGoTools()],
70+
71+
add_datetime_to_instructions=True,
72+
73+
)
74+
75+
- - -
76+
77+
Writer Agent
78+
79+
writer = Agent(
80+
81+
name="Writer",
82+
83+
role="Writes a high-quality article",
84+
85+
description="Senior NYT writer tasked with long-form editorial content.",
86+
87+
instructions=[
88+
89+
     "Read all articles using \`read_article\`.",
90+
91+
     "Write a structured, engaging article of at least 15 paragraphs.",
92+
93+
     "Support arguments with factual citations and ensure clarity.",
94+
95+
     "Never fabricate facts or plagiarize content."
96+
97+
],
98+
99+
tools=\[Newspaper4kTools()],
100+
101+
add_datetime_to_instructions=True,
102+
103+
)
104+
105+
- - -
106+
107+
Editor Team (Manager Agent in Coordinate Mode)
108+
109+
editor = Team(
110+
111+
name="Editor",
112+
113+
mode="coordinate",
114+
115+
model=OpenAIChat("gpt-4o"),
116+
117+
members=\[searcher, writer],
118+
119+
description="You are a senior NYT editor coordinating the team.",
120+
121+
instructions=[
122+
123+
     "Delegate research to the search agent.",
124+
125+
     "Delegate drafting to the writer.",
126+
127+
     "Review, proofread, and enhance the final article.",
128+
129+
     "Maintain NYT-level quality, structure, and tone."
130+
131+
],
132+
133+
add_datetime_to_instructions=True,
134+
135+
send_team_context_to_members=True,
136+
137+
show_members_responses=True,
138+
139+
markdown=True,
140+
141+
)
142+
143+
- - -
144+
145+
 Running the Team
146+
147+
Method 1: Print output directly
148+
149+
editor.print_response("Write an article about latest developments in AI.")
150+
151+
Method 2: Get raw result
152+
153+
python
154+
155+
CopyEdit
156+
157+
response = editor.run("Write an article about latest developments in AI.")
158+
159+
- - -
160+
161+
Key Parameters Explained
162+
163+
<table>
164+
<thead style="background-color:#f2f2f2">
165+
<tr>
166+
<th>Parameter</th>
167+
<th>Purpose</th>
168+
</tr>
169+
</thead>
170+
<tbody>
171+
<tr>
172+
<td><code>mode="coordinate"</code></td>
173+
<td>Enables structured delegation and task flow</td>
174+
</tr>
175+
<tr>
176+
<td><code>members=\\[...]</code></td>
177+
<td>Assigns role-specific agents</td>
178+
</tr>
179+
<tr>
180+
<td><code>send_team_context_to_members</code></td>
181+
<td>Shares global task context with all agents</td>
182+
</tr>
183+
<tr>
184+
<td><code>show_members_responses=True</code></td>
185+
<td>Displays each member's intermediate output</td>
186+
</tr>
187+
<tr>
188+
<td><code>add_datetime_to_instructions</code></td>
189+
<td>Contextualizes outputs with current date/time</td>
190+
</tr>
191+
</tbody>
192+
</table>
193+
194+
Pro Tip: Define Success Criteria
195+
196+
Adding success_criteria helps agents align their efforts with measurable outcomes.
197+
198+
python
199+
200+
CopyEdit
201+
202+
strategy_team = Team(
203+
204+
members=\[market_analyst, competitive_analyst, strategic_planner],
205+
206+
mode="coordinate",
207+
208+
name="Strategy Team",
209+
210+
description="A team that develops strategic recommendations",
211+
212+
success_criteria="Produce actionable strategic recommendations supported by market and competitive analysis",
213+
214+
)
215+
216+
response = strategy_team.run(
217+
218+
"Develop a market entry strategy for our new AI-powered healthcare product"
219+
220+
)
221+
222+
This ensures agents not only act — but act with strategic purpose and direction.
223+
224+
![A screenshot of a computer
225+
226+
AI-generated content may be incorrect.](https://lh7-rt.googleusercontent.com/docsz/AD_4nXeozc8krAlw2Fv3tJ0XA0UQ0mWQHg18re_uMmiOQWm74S61dPhbmt2CHkPE3K3yrKonk1wILiSRsOIWzE-eqBEfSQ7y1uEkEL0Ss5_7JPxfLLogREgJg9yyTVemIED2SxNkc69T?key=H68knZDq8LPblpx1flSBtQ)
227+
228+
- - -
229+
230+
Conclusion
231+
232+
Coordinate Mode in Agentic AI exemplifies intelligent task distribution, where specialized agents work under centralized leadership to deliver complex, high-quality outputs. The AGNO Framework simplifies this orchestration through agent roles, tool integration, and goal alignment — enabling scalable, auditable AI workflows.
233+
234+
From editorial pipelines to business strategy engines, multi-agent coordination is redefining how work gets done — autonomously, intelligently, and collaboratively.
81.3 KB
Loading
542 KB
Loading

0 commit comments

Comments
 (0)