Skip to content

Commit e414a79

Browse files
committed
Update Blog “llm-agentic-tool-mesh-harnessing-agent-services-and-multi-agent-ai-for-next-level-gen-ai”
1 parent e1d2fba commit e414a79

File tree

2 files changed

+67
-68
lines changed

2 files changed

+67
-68
lines changed

content/blog/llm-agentic-tool-mesh-harnessing-agent-services-and-multi-agent-ai-for-next-level-gen-ai.md

Lines changed: 67 additions & 68 deletions
Original file line numberDiff line numberDiff line change
@@ -5,6 +5,11 @@ date: 2024-12-12T17:08:46.212Z
55
author: Antonio Fin
66
authorimage: /img/afin_photo.jpg
77
disable: false
8+
tags:
9+
- HPE
10+
- GenAI
11+
- LAT-Mesh
12+
- MultiAgents
813
---
914
<style>
1015
li {
@@ -16,7 +21,7 @@ li {
1621

1722
In our previous blog post, we explored the [Chat Service](https://developer.hpe.com/blog/ll-mesh-exploring-chat-service-and-factory-design-pattern/) of [LLM Agentic Tool Mesh](https://developer.hpe.com/blog/ll-mesh-democratizing-gen-ai-through-open-source-innovation-1/), an [open-source project](https://github.com/HewlettPackard/llmesh) aimed at democratizing Generative AI (Gen AI).
1823

19-
Today, we'll delve into another core feature: the **Agent Service**. We'll discuss what agents are, explain the LLM Agentic Tool Mesh related services, and showcase examples from the LLM Agentic Tool Mesh repository.
24+
Today, we'll delve into another core feature: the **Agent Service**. We'll discuss what agents are, explain the LLM Agentic Tool Mesh related services, and showcase examples from its repository.
2025

2126
## Understanding LLM agents
2227

@@ -45,8 +50,6 @@ LLM Agentic Tool Mesh provides all the necessary tools to build a powerful agent
4550
2. Reasoning engine
4651
3. Multi-agent task force
4752

48-
Let's explore each of these components in detail.
49-
5053
### Tool repository
5154

5255
Agents in LLM Agentic Tool Mesh rely on tools to perform specialized tasks like information retrieval, document summarization, or data analysis. These tools extend the agents' capabilities, allowing them to efficiently complete complex operations. The **tool repository** service in LLM Agentic Tool Mesh simplifies and automates the storage, management, and retrieval of these tools.
@@ -111,8 +114,6 @@ Key Features:
111114
* **Memory management**: Handles storage and retrieval of relevant memory for ongoing tasks or conversations.
112115
* **Dynamic configuration**: Allows users to adjust the Reasoning Engine's behavior dynamically, tailoring interactions between LLMs and tools.
113116

114-
Architecture Overview:
115-
116117
![](/img/reasoning.png)
117118

118119
### Task force
@@ -127,42 +128,51 @@ Key Features:
127128
* **Tool integration**: Agents utilize a suite of tools to complete their tasks, dynamically loaded and executed during task completion.
128129

129130
Example Usage:
131+
130132
```python
131133
from athon.agents import TaskForce
134+
from custom_tools import DataFetcher, SalesSummarizer, PresentationBuilder
132135

133-
# Configuration for the Task Force Multi-Agents
136+
# Example configuration for the Task Force Multi-Agents
134137
TASK_FORCE_CONFIG = {
135138
'type': 'CrewAIMultiAgent',
136139
'plan_type': 'Sequential',
137-
'tasks': \[
140+
'tasks': [
138141
{
139-
'description': 'Perform research to gather information for a blog post on {request}.',
140-
'expected_output': 'A summary of key insights related to the topic.',
142+
'description': 'Analyze the recent sales data.',
143+
'expected_output': 'A summary report of sales trends.',
141144
'agent': {
142-
'role': 'Research Agent',
143-
'goal': 'Gather relevant information for the blog post',
144-
'backstory': 'Expert in researching and summarizing information',
145-
'tools': []
145+
'role': 'Data Analyst',
146+
'goal': 'Summarize sales data',
147+
'backstory': 'Experienced in sales data analysis',
148+
'tools': ['DataFetcher', 'SalesSummarizer']
146149
}
147150
},
148-
# Additional tasks...
151+
{
152+
'description': 'Prepare a presentation based on the report.',
153+
'expected_output': 'A presentation deck summarizing the sales report.',
154+
'agent': {
155+
'role': 'Presentation Specialist',
156+
'goal': 'Create a presentation',
157+
'backstory': 'Expert in creating engaging presentations',
158+
'tools': ['PresentationBuilder']
159+
}
160+
}
149161
],
150162
'llm': {
151163
'type': 'LangChainChatOpenAI',
152-
'api_key': 'your-api-key',
153-
'model_name': 'openai/gpt-4',
154-
'base_url': 'your-base-url'
164+
'api_key': 'your-api-key-here',
165+
'model_name': 'gpt-4o-mini'
155166
},
156167
'verbose': True,
157168
'memory': False
158169
}
159170

160-
# Initialize the Task Force
171+
# Initialize the Task Force with the provided configuration
161172
task_force = TaskForce.create(TASK_FORCE_CONFIG)
162-
Running the task force with an input message:
163173

164174
# Run the task force with an input message
165-
input_message = "Write a blog post about the importance of renewable energy."
175+
input_message = "Generate a sales analysis report and prepare a presentation."
166176
result = task_force.run(input_message)
167177

168178
# Handle the response
@@ -174,74 +184,63 @@ else:
174184

175185
## LLM Agentic Tool Mesh in Action: Examples from the Repository
176186

177-
178187
The LLM Agentic Tool Mesh GitHub repository includes several examples demonstrating the versatility and capabilities of the agent services.
179188

180-
181189
### Chatbot application (examples/app_chatbot)
182190

183191
This chatbot is capable of reasoning and invoking appropriate LLM tools to perform specific actions. You can configure the chatbot using files that define LLM Agentic Tool Mesh platform services, project settings, toolkits, and memory configurations. The web app orchestrates both local and remote LLM tools, allowing them to define their own HTML interfaces, supporting text, images, and code presentations.
184192

185-
186193
Configuration Example:
187194

188195
```yaml
189-
190-
projects:
191-
- name: "Personal Chat"
192-
memory:
193-
type: LangChainBuffer
194-
memory_key: chat_history
195-
return_messages: true
196-
tools:
197-
- "https://127.0.0.1:5002/" # Basic Copywriter
198-
- name: "Project 5G Network"
199-
memory:
200-
type: LangChainRemote
201-
memory_key: chat_history
202-
return_messages: true
203-
base_url: "https://127.0.0.1:5010/"
204-
timeout: 100
205-
cert_verify: false
206-
tools:
207-
- "https://127.0.0.1:5005/" # OpenAPI Manager
208-
- "https://127.0.0.1:5006/" # IMS Expert
209-
- name: "Project Meteo"
210-
memory:
211-
type: LangChainBuffer
212-
memory_key: chat_history
213-
return_messages: true
214-
tools:
215-
- "https://127.0.0.1:5003/" # Temperature Finder
196+
projects:
197+
- name: "Personal Chat"
198+
memory:
199+
type: LangChainBuffer
200+
memory_key: chat_history
201+
return_messages: true
202+
tools:
203+
- "https://127.0.0.1:5002/" # Basic Copywriter
204+
- name: "Project 5G Network"
205+
memory:
206+
type: LangChainRemote
207+
memory_key: chat_history
208+
return_messages: true
209+
base_url: "https://127.0.0.1:5010/"
210+
timeout: 100
211+
cert_verify: false
212+
tools:
213+
- "https://127.0.0.1:5005/" # OpenAPI Manager
214+
- "https://127.0.0.1:5006/" # IMS Expert
215+
- name: "Project Meteo"
216+
memory:
217+
type: LangChainBuffer
218+
memory_key: chat_history
219+
return_messages: true
220+
tools:
221+
- "https://127.0.0.1:5003/" # Temperature Finder
216222
- "https://127.0.0.1:5004/" # Temperature Analyzer
217223
```
218224
219-
220225
### OpenAPI manager (examples/tool_agents)
221226
222-
223227
The OpenAPI Manager is a multi-agent tool that reads OpenAPI documentation and provides users with relevant information based on their queries. It uses the Task Force service to answer questions related to 5G APIs.
224228
225-
226229
Capabilities:
227230
228-
229-
* ListOpenApis: Lists all OpenAPI specifications present in the system.
230-
* SelectOpenApi: Selects a specific OpenAPI specification.
231-
* GetOpenApiVersion: Returns the OpenAPI version of the selected specification.
232-
* GetInfo: Returns the information dictionary of the selected specification.
233-
* GetMethodsByTag: Lists all methods of the selected specification for a specific tag.
234-
* GetMethodById: Returns detailed information about a method selected by ID.
235-
* GetRequestBody: Returns the request body schema of the selected specification.
231+
* ListOpenApis: Lists all OpenAPI specifications present in the system.
232+
* SelectOpenApi: Selects a specific OpenAPI specification.
233+
* GetOpenApiVersion: Returns the OpenAPI version of the selected specification.
234+
* GetInfo: Returns the information dictionary of the selected specification.
235+
* GetMethodsByTag: Lists all methods of the selected specification for a specific tag.
236+
* GetMethodById: Returns detailed information about a method selected by ID.
237+
* GetRequestBody: Returns the request body schema of the selected specification.
236238
* GetResponse: Returns the response schema of the selected specification.
237239
238-
239-
240-
Conclusion
240+
![](/img/mesh.png)
241241
242-
243-
The LLM Agentic Tool Mesh Agent Services exemplify how advanced design principles and innovative prompt engineering simplify and enhance the adoption of Gen AI. By abstracting complexities and providing versatile examples, LLM Agentic Tool Mesh enables developers and users alike to unlock the transformative potential of Gen AI in various domains.
242+
## Conclusion
244243
245-
246-
Stay tuned for our next post, where we'll explore another key service of LLM Agentic Tool Mesh and continue our journey to democratize Gen AI!
244+
The **LLM Agentic Tool Mesh Agent Service** exemplifies how advanced design principles and innovative prompt engineering simplify and enhance the adoption of Gen AI. By abstracting complexities and providing versatile examples, LLM Agentic Tool Mesh enables developers and users alike to unlock the transformative potential of Gen AI in various domains.
247245
246+
Stay tuned for our next post, where we'll explore another key service of LLM Agentic Tool Mesh and continue our journey to democratize Gen AI!

static/img/mesh.png

256 KB
Loading

0 commit comments

Comments
 (0)